cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176070 Numbers of the form k^3+k^2+k+1 that are the product of two distinct primes.

Original entry on oeis.org

15, 85, 259, 1111, 4369, 47989, 65641, 291919, 2016379, 2214031, 3397651, 3820909, 5864581, 9305311, 13881841, 15687751, 16843009, 19756171, 22030681, 28746559, 62256349, 64160401, 74264821, 79692331, 101412319, 117889591, 172189309, 185518471, 191435329, 270004099, 328985791
Offset: 1

Views

Author

Keywords

Comments

As k^3 + k^2 + k + 1 = (k + 1) * (k^2 + 1) and k <= 1 does not give a term, k + 1 and k^2 + 1 must be prime so k must be even. - David A. Corneth, May 30 2023

Examples

			15 is in the sequence as 15 = 3*5 = 2^3+2^2+2+1; 15 is a product of two distinct primes and of the form k^3 + k^2 + k + 1.
		

Crossrefs

Cf. A002496, A006093, A006881, A053698, A070689, A174969, A176069, A237627 (semiprimes of that form).

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1};Select[Array[ #^3+#^2+#+1&,7! ],f[ # ]&]
  • PARI
    upto(n) = {my(res = List(), u = sqrtnint(n, 3) + 1); forprime(p = 3, u, c = (p-1)^2 + 1; if(isprime(c), listput(res, c*p))); res} \\ David A. Corneth, May 30 2023

Formula

a(n) = (A070689(n + 1) + 1) * (A070689(n + 1)^2 + 1). - David A. Corneth, May 30 2023

Extensions

Name corrected by and more terms from David A. Corneth, May 30 2023