A176071 Numbers of the form 2^k + k + 1 that are the product of two distinct primes.
21, 38, 265, 4109, 65553, 262163, 1048597, 67108891, 274877906983, 4503599627370549, 73786976294838206531, 75557863725914323419213, 302231454903657293676623, 5192296858534827628530496329220209, 10889035741470030830827987437816582766726, 95780971304118053647396689196894323976171195136475313
Offset: 1
Keywords
Examples
21 = 3 * 7 = 2^4 + 4 + 1
Programs
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1};Select[Array[2^#+#+1&,140,0],f[ # ]&] Select[Table[2^k+k+1,{k,0,200}],PrimeNu[#]==PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 11 2023 *)
-
PARI
is(n) = my(f = factor(n), e = logint(n, 2)); f[,2] == [1, 1]~ && n == 1<
David A. Corneth, May 27 2023
Extensions
Name corrected by David A. Corneth, May 27 2023