A176079 Triangle T(n,k) read by rows: If k divides n then k-1, otherwise -1.
0, 0, 1, 0, -1, 2, 0, 1, -1, 3, 0, -1, -1, -1, 4, 0, 1, 2, -1, -1, 5, 0, -1, -1, -1, -1, -1, 6, 0, 1, -1, 3, -1, -1, -1, 7, 0, -1, 2, -1, -1, -1, -1, -1, 8, 0, 1, -1, -1, 4, -1, -1, -1, -1, 9, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 0, 1, 2, 3, -1, 5, -1, -1, -1, -1, -1, 11
Offset: 1
Examples
Table begins: 0; 0, 1; 0, -1, 2; 0, 1, -1, 3; 0, -1, -1, -1, 4; 0, 1, 2, -1, -1, 5; 0, -1, -1, -1, -1, -1, 6; 0, 1, -1, 3, -1, -1, -1, 7; 0, -1, 2, -1, -1, -1, -1, -1, 8; 0, 1, -1, -1, 4, -1, -1, -1, -1, 9;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if (n mod k = 0) then return k-1; else return -1; fi; end; Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Nov 27 2019
-
Magma
[(n mod k) eq 0 select k-1 else -1: k in [1..n], n in [1..15]]; // G. C. Greubel, Nov 27 2019
-
Maple
seq(seq( `if`(mod(n,k)=0, k-1, -1) , k=1..n), n=1..15); # G. C. Greubel, Nov 27 2019
-
Mathematica
Table[If[Divisible[n,k],k-1,-1],{n,15},{k,n}]//Flatten (* Harvey P. Dale, May 20 2016 *)
-
PARI
T(n,k)= if(Mod(n,k)==0, k-1, -1); \\ G. C. Greubel, Nov 27 2019
-
Sage
def T(n, k): if (mod(n,k)==0): return k-1 else: return -1 [[T(n, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Nov 27 2019
Formula
T(n,k) = -A191904(n,k) for n >= k.
Sum_{k=1..n} T(n,k) = A001065(n). - Jon E. Schoenfield, Nov 29 2019