A176095 a(n) = n - phi(2*n), where phi() is the Euler totient A000010().
0, 0, 1, 0, 1, 2, 1, 0, 3, 2, 1, 4, 1, 2, 7, 0, 1, 6, 1, 4, 9, 2, 1, 8, 5, 2, 9, 4, 1, 14, 1, 0, 13, 2, 11, 12, 1, 2, 15, 8, 1, 18, 1, 4, 21, 2, 1, 16, 7, 10, 19, 4, 1, 18, 15, 8, 21, 2, 1, 28, 1, 2, 27, 0, 17, 26, 1, 4, 25, 22, 1, 24, 1, 2, 35, 4, 17, 30, 1, 16, 27, 2, 1, 36, 21, 2, 31, 8, 1, 42, 19
Offset: 1
Examples
a(1) = 1 - phi(2) = 0; a(2) = 2 - phi(2*2) = 2 - 2 = 0; a(3) = 3 - phi(2*3) = 3 - 2 = 1; If n = (2^m)*p, with m = 3 and p = 7, then n = 2^3 * 7 = 56, and a(56) = 2^3 = 8.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
Maple
A176095 := proc(n) n-numtheory[phi](2*n) ; end proc: seq(A176095(n),n=1..60) ;
-
Mathematica
Table[n-EulerPhi[2n],{n,0,100}] (* Harvey P. Dale, Jul 24 2011 *)
-
PARI
A176095(n) = (n-eulerphi(n+n)); \\ Antti Karttunen, May 19 2021
Formula
a(n) = n - A062570(n).
a(2^k) = 0, k >= 0. - Michel Lagneau, Dec 17 2010
a(2^m*A000040(k)) = 2^m, m >= 1, k >= 2. - Michel Lagneau, Dec 17 2010
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 - 8/Pi^2 = 0.1894305... . - Amiram Eldar, Dec 21 2023
Extensions
Offset corrected; entry corrected and edited by Michel Lagneau, Apr 25 2010