A176153
Triangle T(n,k) = Sum_{j=0..k} Stirling1(n, n-j)*binomial(n,j), read by rows.
Original entry on oeis.org
1, 1, 1, 1, -1, -1, 1, -8, -2, -2, 1, -23, 43, 19, 19, 1, -49, 301, -199, -79, -79, 1, -89, 1186, -3314, 796, 76, 76, 1, -146, 3529, -22196, 34644, -2400, 2640, 2640, 1, -223, 8793, -100967, 372863, -362529, 3375, -36945, -36945, 1, -323, 19333, -361691, 2466883, -6010901, 3911515, -33509, 329371, 329371
Offset: 0
Triangle begins as:
1;
1, 1;
1, -1, -1;
1, -8, -2, -2;
1, -23, 43, 19, 19;
1, -49, 301, -199, -79, -79;
1, -89, 1186, -3314, 796, 76, 76;
1, -146, 3529, -22196, 34644, -2400, 2640, 2640;
1, -223, 8793, -100967, 372863, -362529, 3375, -36945, -36945;
-
Flat(List([0..10], n-> List([0..n], k-> Sum([0..k], j-> (-1)^j*Stirling1(n,n-j)* Binomial(n,j)) ))); # G. C. Greubel, Nov 26 2019
-
[(&+[StirlingFirst(n, n-j)*Binomial(n,j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
-
seq(seq( add(combinat[stirling1](n,n-j)*binomial(n,j), j=0..k), k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
-
T[n_, k_]:= Sum[StirlingS1[n, n-j]*Binomial[n, j], {j,0,k}];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
T(n,k) = sum(j=0,k, stirling(n,n-j,1)*binomial(n,j)); \\ G. C. Greubel, Nov 26 2019
-
[[sum((-1)^j*stirling_number1(n, n-j)*binomial(n,j) for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
A176154
Triangle T(n,k) = Sum_{j=0..k} Stirling1(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} Stirling1(n, n-j)*binomial(n,j), read by rows.
Original entry on oeis.org
2, 2, 2, 0, -2, 0, -1, -10, -10, -1, 20, -4, 86, -4, 20, -78, -128, 102, 102, -128, -78, 77, -13, 1982, -6628, 1982, -13, 77, 2641, 2494, 1129, 12448, 12448, 1129, 2494, 2641, -36944, -37168, 12168, -463496, 745726, -463496, 12168, -37168, -36944
Offset: 0
Triangle begins as:
2;
2, 2;
0, -2, 0;
-1, -10, -10, -1;
20, -4, 86, -4, 20;
-78, -128, 102, 102, -128, -78;
77, -13, 1982, -6628, 1982, -13, 77;
2641, 2494, 1129, 12448, 12448, 1129, 2494, 2641;
-
T:= function(n,k) return Sum([0..k], j-> (-1)^j*Stirling1(n,n-j)*Binomial(n,j)) + Sum([0..n-k], j-> (-1)^j*Stirling1(n, n-j)*Binomial(n,j)); end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 26 2019
-
T:= func< n,k | (&+[StirlingFirst(n,n-j)*Binomial(n,j): j in [0..k]]) + (&+[StirlingFirst(n,n-j)*Binomial(n,j): j in [0..n-k]]) >;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
-
with(combinat);
T:= proc(n, k) option remember; add(stirling1(n, n-j)*binomial(n, j), j=0..k) + add(stirling1(n, n-j)* binomial(n, j), j=0..n-k); end;
seq(seq(T(n,k), k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
-
T[n_, k_]:= Sum[StirlingS1[n, n-j]*Binomial[n, j], {j, 0, k}] + Sum[StirlingS1[n, n-j]*Binomial[n, j], {j, 0, n-k}];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
T(n,k) = sum(j=0,k, stirling(n,n-j,1)*binomial(n,j)) + sum(j=0,n-k, stirling(n, n-j,1)*binomial(n,j)); \\ G. C. Greubel, Nov 26 2019
-
def T(n, k): return sum((-1)^j*stirling_number1(n,n-j)*binomial(n,j) for j in (0..k)) + sum((-1)^j*stirling_number1(n, n-j)*binomial(n,j) for j in (0..n-k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
A176155
Regular triangle, T(n, k) = f(n, k) - f(n, 0) + 1, where f(n, k) = Sum_{j=0..k} StirlingS1(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} StirlingS1(n, n-j)*binomial(n, j), read by rows.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 1, -8, -8, 1, 1, -23, 67, -23, 1, 1, -49, 181, 181, -49, 1, 1, -89, 1906, -6704, 1906, -89, 1, 1, -146, -1511, 9808, 9808, -1511, -146, 1, 1, -223, 49113, -426551, 782671, -426551, 49113, -223, 1, 1, -323, -343547, 3220453, -3873389, -3873389, 3220453, -343547, -323, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, -1, 1;
1, -8, -8, 1;
1, -23, 67, -23, 1;
1, -49, 181, 181, -49, 1;
1, -89, 1906, -6704, 1906, -89, 1;
1, -146, -1511, 9808, 9808, -1511, -146, 1;
1, -223, 49113, -426551, 782671, -426551, 49113, -223, 1;
1, -323, -343547, 3220453, -3873389, -3873389, 3220453, -343547, -323, 1;
-
f:= function(n,k) return Sum([0..k], j-> (-1)^j*Stirling1(n,n-j)*Binomial(n,j)) + Sum([0..n-k], j-> (-1)^j*Stirling1(n, n-j)*Binomial(n,j)); end;
Flat(List([0..10], n-> List([0..n], k-> f(n, k)-f(n,0)+1 ))); # G. C. Greubel, Nov 26 2019
-
f:= func< n,k | (&+[StirlingFirst(n,n-j)*Binomial(n,j): j in [0..k]]) + (&+[StirlingFirst(n,n-j)*Binomial(n,j): j in [0..n-k]]) >;
[f(n,k) - f(n,0) + 1: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
-
with(combinat);
f:= proc(n, k) option remember; add(stirling1(n, n-j)*binomial(n, j), j=0..k) + add(stirling1(n, n-j)* binomial(n, j), j=0..n-k); end;
seq(seq(f(n,k) -f(n,0) +1, k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
-
f[n_, k_]:= Sum[StirlingS1[n, n-j]*Binomial[n, j], {j,0,k}] + Sum[StirlingS1[n, n-j]*Binomial[n, j], {j,0,n-k}];
Table[f[n, k] - f[n, 0] + 1, {n,0,10}, {k,0,n}]//Flatten
-
f(n,k) = sum(j=0,k, stirling(n,n-j,1)*binomial(n,j)) + sum(j=0,n-k, stirling(n, n-j,1)*binomial(n,j));
T(n,k) = f(n,k) - f(n,0) + 1; \\ G. C. Greubel, Nov 26 2019
-
def f(n, k): return sum((-1)^j*stirling_number1(n,n-j)*binomial(n,j) for j in (0..k)) + sum((-1)^j*stirling_number1(n, n-j)*binomial(n,j) for j in (0..n-k))
[[f(n, k)-f(n,0)+1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
A176157
Regular triangle, T(n, k) = f(n, k) - f(n, 0) + 1, where f(n, k) = Sum_{j=0..k} StirlingS2(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} StirlingS2(n, n-j)*binomial(n, j), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 10, 10, 1, 1, 25, 63, 25, 1, 1, 51, 296, 296, 51, 1, 1, 91, 1060, 2395, 1060, 91, 1, 1, 148, 3081, 14008, 14008, 3081, 148, 1, 1, 225, 7665, 62909, 127883, 62909, 7665, 225, 1, 1, 325, 16948, 230032, 851758, 851758, 230032, 16948, 325, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 10, 10, 1;
1, 25, 63, 25, 1;
1, 51, 296, 296, 51, 1;
1, 91, 1060, 2395, 1060, 91, 1;
1, 148, 3081, 14008, 14008, 3081, 148, 1;
1, 225, 7665, 62909, 127883, 62909, 7665, 225, 1;
1, 325, 16948, 230032, 851758, 851758, 230032, 16948, 325, 1;
1, 451, 34191, 716796, 4390866, 7945116, 4390866, 716796, 34191, 451, 1;
-
f:= function(n,k) return Sum([0..k], j-> Stirling2(n,n-j)*Binomial(n,j)) + Sum([0..n-k], j-> Stirling2(n, n-j)*Binomial(n,j)); end;
Flat(List([0..10], n-> List([0..n], k-> f(n, k)-f(n,0)+1 ))); # G. C. Greubel, Nov 26 2019
-
f:= func< n,k | (&+[StirlingSecond(n,n-j)*Binomial(n,j): j in [0..k]]) + (&+[StirlingSecond(n,n-j)*Binomial(n,j): j in [0..n-k]]) >;
[f(n,k) - f(n,0) + 1: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
-
with(combinat);
f:= proc(n, k) option remember; add(stirling2(n, n-j)*binomial(n, j), j=0..k) + add(stirling2(n, n-j)* binomial(n, j), j=0..n-k); end;
seq(seq(f(n,k) -f(n,0) +1, k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
-
f[n_, k_]:= Sum[StirlingS2[n, n-j]*Binomial[n, j], {j,0,k}] + Sum[StirlingS2[n, n-j]*Binomial[n, j], {j,0,n-k}];
Table[f[n, k] - f[n, 0] + 1, {n,0,10}, {k,0,n}]//Flatten
-
f(n,k) = sum(j=0,k, stirling(n,n-j,2)*binomial(n,j)) + sum(j=0,n-k, stirling(n, n-j,2)*binomial(n,j));
T(n,k) = f(n,k) - f(n,0) + 1; \\ G. C. Greubel, Nov 26 2019
-
def f(n, k): return sum(stirling_number2(n,n-j)*binomial(n,j) for j in (0..k)) + sum(stirling_number2(n, n-j)*binomial(n,j) for j in (0..n-k))
[[f(n, k)-f(n,0)+1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
Showing 1-4 of 4 results.
Comments