cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176166 a(n) is the maximum exponent in the prime factorization of the n-th triangular number.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 2, 3, 3, 1, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 3, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 1, 1, 1, 1, 2, 5, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 4, 4, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

From Amiram Eldar, Mar 28 2025: (Start)
The asymptotic density of the occurrences of terms < k is f(k) = Product_{p prime} (1 - 2/p^k) * (1+1/(2*(2^(k-1)-1))), for k >= 2.
The asymptotic density of the occurrences of k is d(1) = f(2) for k = 1, and d(k) = f(k+1) - f(k) for k >= 2.
The asymptotic mean of this sequence is lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k*d(k) = 1 + Sum_{k>=1} (1 - Product_{p prime} (1 - 2/p^(k+1)) * (1+1/(2*(2^k-1)))) = 1.89137712344735606085... . (End)

Crossrefs

Programs

  • Mathematica
    f1[n_] := Max[Last/@FactorInteger[n]]; f2[n_]:=n*(n+1)/2; Join[{0}, Table[f1[f2[n]], {n, 2, 4*5!}]]
    Max[FactorInteger[#][[;;,2]]]&/@Accumulate[Range[110]] // ReplacePart[1 -> 0] (* Harvey P. Dale, Oct 23 2024 *)
  • PARI
    a(n) = if(n == 1, 0, vecmax(factor(n*(n+1)/2)[, 2])); \\ Amiram Eldar, Mar 28 2025

Formula

From Amiram Eldar, Mar 28 2025: (Start)
a(n) = A051903(A000217(n)).
a(n) = max(A051903(n), A051903((n+1)/2)) if n is odd, and max(A051903(n/2), A051903(n+1)) if n is even. (End)

Extensions

a(1) inserted by Amiram Eldar, Mar 28 2025