cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A334572 Let x(n, k) be the exponent of prime(k) in the factorization of n, then a(n) = Max_{k} abs(x(n,k)- x(n-1,k)).

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 2, 2, 1, 1, 4, 4, 2, 2, 2, 2, 1, 1, 3, 3, 2, 3, 3, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 2, 1, 4, 4, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 2, 1, 2, 6, 6, 1, 1, 2, 2, 1, 1, 3, 3, 1, 2, 2, 2, 1, 1, 4, 4, 4, 1, 2, 2, 1, 1, 3, 3, 2
Offset: 2

Views

Author

Michel Marcus, May 06 2020

Keywords

Comments

a(n) = d_infinite(n, n-1) as defined in Kolossváry & Kolossváry link.

Examples

			The "coordinates" of the prime factorization are
  0,0,0,0, ... for n=1,
  1,0,0,0, ... for n=2,
  0,1,0,0, ... for n=3,
  2,0,0,0, ... for n=4,
  0,0,1,0, ... for n=5,
  1,1,0,0, ... for n=6;
so the absolute differences are
  1,0,0,0, ... so a(2)=1,
  1,1,0,0, ... so a(3)=1,
  2,1,0,0, ... so a(4)=2,
  2,0,1,0, ... so a(5)=2,
  1,1,1,0, ... so a(6)=1.
		

Crossrefs

Programs

  • Maple
    f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
    a:= n-> max(map(abs, {coeffs(f(n)-f(n-1))})):
    seq(a(n), n=2..120);  # Alois P. Heinz, May 06 2020
  • Mathematica
    Block[{f}, f[n_] := If[n == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ n]; Array[Function[{a, b, m}, Max@ Abs[Subtract @@ #] &@ Map[PadRight[#, m] &, {a, b}]] @@ {#1, #2, Max@ Map[Length, {#1, #2}]} & @@ {f[# - 1], f@ #} &, 106, 2]] (* Michael De Vlieger, May 06 2020 *)
    (* Second program: *)
    f[n_] := Sum[{p, e} = pe; e x^p, {pe, FactorInteger[n]}];
    a[n_] := CoefficientList[f[n]-f[n-1], x] // Abs // Max;
    a /@ Range[2, 90] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
    Max @@@ Partition[Join[{0}, Table[Max[FactorInteger[n][[;; , 2]]], {n, 2, 100}]], 2, 1] (* Amiram Eldar, Jan 05 2024 *)
  • PARI
    a(n) = {my(f=factor(n/(n-1))[,2]~); vecmax(apply(x->abs(x), f));}
    
  • PARI
    A051903(n)=vecmax(factor(n)[, 2])
    a(n)=if(n<4, return(1)); max(A051903(n-1),A051903(n)) \\ Charles R Greathouse IV, Jan 30 2022

Formula

a(n) = max(A051903(n-1), A051903(n)). - Pontus von Brömssen, May 07 2020
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=2..m} a(k) = 2.2883695... (A334574). - Amiram Eldar, Jan 05 2024
a(n) = A051903(A002378(n-1)). - Amiram Eldar, Mar 28 2025
Showing 1-1 of 1 results.