cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334573 Partial sums of A334572.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 11, 14, 16, 17, 19, 21, 22, 23, 27, 31, 33, 35, 37, 39, 40, 41, 44, 47, 49, 52, 55, 57, 58, 59, 64, 69, 70, 71, 73, 75, 76, 77, 80, 83, 84, 85, 87, 89, 91, 92, 96, 100, 102, 104, 106, 108, 111, 114, 117, 120, 121, 122, 124, 126, 127, 129, 135, 141
Offset: 2

Views

Author

Michel Marcus, May 06 2020

Keywords

Comments

a(n) = L_infinite(n) = Sum_{m=2..n} d_infinite(m, m-1) as defined in Kolossváry link.

Crossrefs

Programs

  • Maple
    f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
    b:= n-> max(map(abs, {coeffs(f(n)-f(n-1))})):
    a:= proc(n) option remember; `if`(n<2, 0, a(n-1)+b(n)) end:
    seq(a(n), n=2..80);  # Alois P. Heinz, May 06 2020
  • Mathematica
    f[n_] := Sum[{p, e} = pe; e x^p, {pe, FactorInteger[n]}];
    b[n_] :=  CoefficientList[f[n] - f[n-1], x] // Abs // Max;
    b /@ Range[2, 80] // Accumulate (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
    Accumulate[Max @@@ Partition[Join[{0}, Table[Max[FactorInteger[n][[;; , 2]]], {n, 2, 100}]], 2, 1]] (* Amiram Eldar, Jan 05 2024 *)
  • PARI
    d(n) = {my(f=factor(n/(n-1))[,2]~); vecmax(apply(x->abs(x), f));}
    a(n) = sum(k=2, n, d(k));
    
  • PARI
    first(n)=my(v=vector(n-1),o,t,s); forfactored(k=2,n, t=vecmax(k[2][,2]); v[k[1]-1]=s+=max(o,t); o=t); v \\ Charles R Greathouse IV, Feb 01 2022

Formula

a(n) = Sum_{m=2..n} A334572(n).
a(n) = Sum_{m=2..n} max(A051903(n), A051903(n-1)).
a(n) ~ c * n, where c = 2.2883695... (A334574). - Amiram Eldar, Jan 05 2024

A176166 a(n) is the maximum exponent in the prime factorization of the n-th triangular number.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 2, 3, 3, 1, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 3, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 1, 1, 1, 1, 2, 5, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 4, 4, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

From Amiram Eldar, Mar 28 2025: (Start)
The asymptotic density of the occurrences of terms < k is f(k) = Product_{p prime} (1 - 2/p^k) * (1+1/(2*(2^(k-1)-1))), for k >= 2.
The asymptotic density of the occurrences of k is d(1) = f(2) for k = 1, and d(k) = f(k+1) - f(k) for k >= 2.
The asymptotic mean of this sequence is lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k*d(k) = 1 + Sum_{k>=1} (1 - Product_{p prime} (1 - 2/p^(k+1)) * (1+1/(2*(2^k-1)))) = 1.89137712344735606085... . (End)

Crossrefs

Programs

  • Mathematica
    f1[n_] := Max[Last/@FactorInteger[n]]; f2[n_]:=n*(n+1)/2; Join[{0}, Table[f1[f2[n]], {n, 2, 4*5!}]]
    Max[FactorInteger[#][[;;,2]]]&/@Accumulate[Range[110]] // ReplacePart[1 -> 0] (* Harvey P. Dale, Oct 23 2024 *)
  • PARI
    a(n) = if(n == 1, 0, vecmax(factor(n*(n+1)/2)[, 2])); \\ Amiram Eldar, Mar 28 2025

Formula

From Amiram Eldar, Mar 28 2025: (Start)
a(n) = A051903(A000217(n)).
a(n) = max(A051903(n), A051903((n+1)/2)) if n is odd, and max(A051903(n/2), A051903(n+1)) if n is even. (End)

Extensions

a(1) inserted by Amiram Eldar, Mar 28 2025

A334574 Decimal expansion of limit when n->oo A334573(n)/n.

Original entry on oeis.org

2, 2, 8, 8, 3, 6, 9, 5, 1, 2, 8, 8, 5, 7, 8, 1, 6, 7, 0, 8, 6, 2, 9, 0, 5, 5, 6, 2, 0, 9, 9, 4, 2, 7, 3, 3, 0, 2, 4, 2, 2, 6, 6, 0, 8, 7, 9, 8, 0, 8, 2, 6, 2, 4, 7, 0, 1, 6, 7, 6, 0, 4, 9, 8, 4, 0, 9, 4, 4, 3, 9, 4, 2, 0, 9, 2, 0, 0, 1, 1, 0, 4, 6, 5, 9, 7, 6, 8, 3, 3, 8, 5, 2, 9, 2, 3, 6, 4, 5, 9, 2, 1, 9, 6, 0, 0, 3
Offset: 1

Views

Author

Michel Marcus, May 06 2020

Keywords

Examples

			2.2883695...
		

Crossrefs

Programs

  • PARI
    1 + sumpos(k = 2, 1 - prodeulerrat(1 - 2/p^k)) \\ Amiram Eldar, Jan 05 2024

Formula

Equals 1 + Sum_{k>=2} (1 - Product_{p prime} (1 - 2/p^k)). - Amiram Eldar, Jan 05 2024

Extensions

More terms from Amiram Eldar, Jan 05 2024
Showing 1-3 of 3 results.