A363408 Squares whose base-3 expansion has no 2.
0, 1, 4, 9, 36, 81, 121, 256, 324, 361, 729, 841, 1089, 2304, 2916, 3025, 3249, 6561, 6889, 7569, 9801, 20449, 20736, 26244, 26569, 27225, 29241, 59049, 60025, 62001, 68121, 68644, 88209, 177241, 184041, 186624, 203401, 236196, 237169, 239121, 245025, 263169, 531441, 534361, 540225, 558009
Offset: 1
Examples
a(5) = 36 is a term because 36 = 6^2 = 3^2 + 3^3.
Links
- Robert Israel, Table of n, a(n) for n = 1..665
Programs
-
Maple
R:= {0,1}; S:= {1}; for i from 1 to 20 do S:= map(t -> (3*t, 3*t+1), S); R:= R union select(issqr,S) od: R;
-
Mathematica
Select[Range[0, 1000]^2, ! MemberQ[IntegerDigits[#, 3], 2] &] (* Amiram Eldar, Jun 01 2023 *)
-
Python
from gmpy2 import digits def okA176189(n): return "2" not in digits(n*n, 3) print([k**2 for k in range(1000) if okA176189(k)]) # Michael S. Branicky, Jun 07 2023
Formula
a(n) = A176189(n-1)^2 for n>=2. - Alois P. Heinz, Jun 07 2023
Comments