A176197 Sum of 4 distinct nonzero fourth powers.
354, 723, 898, 963, 978, 1394, 1569, 1634, 1649, 1938, 2003, 2018, 2178, 2193, 2258, 2499, 2674, 2739, 2754, 3043, 3108, 3123, 3283, 3298, 3363, 3714, 3779, 3794, 3954, 3969, 4034, 4194, 4323, 4338, 4369, 4403, 4434, 4449, 4578, 4738, 4803, 4818, 4978
Offset: 1
Keywords
Crossrefs
Subsequence of A003338.
Programs
-
Maple
# returns number of ways of writing n as a^4+b^4+c^4+d^4, 1<=aA176197 := proc(n) local a,i,j,k,l,res ; a := 0 ; for i from 1 do if i^4 > n then break ; end if; for j from i+1 do if i^4+j^4 > n then break ; end if; for k from j+1 do if i^4+j^4+k^4> n then break; end if; res := n-i^4-j^4-k^4 ; if issqr(res) then res := sqrt(res) ; if issqr(res) then l := sqrt(res) ; if l > k then a := a+1 ; end if; end if; end if; end do: end do: end do: a ; end proc: for n from 1 do if A176197(n) > 0 then print(n) ; end if; end do: # R. J. Mathar, May 17 2023
-
Mathematica
lst={};Do[Do[Do[Do[AppendTo[lst,a^4+b^4+c^4+d^4],{d,c+1,11}],{c,b+1,10}],{b,a+1,9}],{a,1,8}];Sort@lst
Comments