cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003338 Numbers that are the sum of 4 nonzero 4th powers.

Original entry on oeis.org

4, 19, 34, 49, 64, 84, 99, 114, 129, 164, 179, 194, 244, 259, 274, 289, 304, 324, 339, 354, 369, 419, 434, 499, 514, 529, 544, 594, 609, 628, 643, 658, 673, 674, 708, 723, 738, 769, 784, 788, 803, 849, 868, 883, 898, 913, 963, 978, 1024, 1043, 1138, 1153, 1218
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
53667 is in the sequence as 53667 = 2^4 + 5^4 + 7^4 + 15^4.
81427 is in the sequence as 81427 = 5^4 + 5^4 + 11^4 + 16^4.
106307 is in the sequence as 106307 = 3^4 + 5^4 + 5^4 + 18^4. (End)
		

Crossrefs

Cf. A047715, A309763 (more than 1 way), A344189 (exactly 2 ways), A176197 (distinct nonzero powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    # returns number of ways of writing n as a^4+b^4+c^4+d^4, 1<=a<=b<=c<=d.
    A003338 := proc(n)
        local a,i,j,k,l,res ;
        a := 0 ;
        for i from 1 do
            if i^4 > n then
                break ;
            end if;
            for j from i do
                if i^4+j^4 > n then
                    break ;
                end if;
                for k from j do
                    if i^4+j^4+k^4> n then
                        break;
                    end if;
                    res := n-i^4-j^4-k^4 ;
                    if issqr(res) then
                        res := sqrt(res) ;
                        if issqr(res) then
                            l := sqrt(res) ;
                            if l >= k then
                                a := a+1 ;
                            end if;
                        end if;
                    end if;
                end do:
            end do:
        end do:
        a ;
    end proc:
    for n from 1 do
        if A003338(n) > 0 then
            print(n) ;
        end if;
    end do: # R. J. Mathar, May 17 2023
  • Mathematica
    f[maxno_]:=Module[{nn=Floor[Power[maxno-3, 1/4]],seq}, seq=Union[Total/@(Tuples[Range[nn],{4}]^4)]; Select[seq,#<=maxno&]]
    f[1000] (* Harvey P. Dale, Feb 27 2011 *)
  • Python
    limit = 1218
    from functools import lru_cache
    qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 3 <= limit]
    qds = set(qd)
    @lru_cache(maxsize=None)
    def findsums(n, m):
      if m == 1: return {(n, )} if n in qds else set()
      return set(tuple(sorted(t+(q,))) for q in qds for t in findsums(n-q, m-1))
    print([n for n in range(4, limit+1) if len(findsums(n, 4)) >= 1]) # Michael S. Branicky, Apr 19 2021

A096739 Numbers k such that k^4 can be written as a sum of four distinct positive 4th powers.

Original entry on oeis.org

353, 651, 706, 1059, 1302, 1412, 1765, 1953, 2118, 2471, 2487, 2501, 2604, 2824, 2829, 3177, 3255, 3530, 3723, 3883, 3906, 3973, 4236, 4267, 4333, 4449, 4557, 4589, 4942, 4949, 4974, 5002, 5208, 5281, 5295, 5463, 5491, 5543, 5648, 5658, 5729, 5859
Offset: 1

Views

Author

Lekraj Beedassy, May 30 2002

Keywords

Comments

From David Wasserman, Nov 16 2007: (Start)
Every multiple of a term is a term.
Is this sequence the same as A003294? (End)

Examples

			Example solutions:
   353^4 =   30^4 +  120^4 +  272^4 +  315^4;
   706^4 =   60^4 +  240^4 +  544^4 +  630^4;
  1059^4 =   90^4 +  360^4 +  816^4 +  945^4;
  1302^4 =  480^4 +  680^4 +  860^4 + 1198^4;
  1412^4 =  120^4 +  480^4 + 1088^4 + 1260^4;
  3723^4 = 2270^4 + 2345^4 + 2460^4 + 3152^4.
		

References

  • D. Wells, Curious and interesting numbers, Penguin Books, p. 139.

Crossrefs

Extensions

Corrected by Bo Asklund (boa(AT)mensa.se), Nov 05 2004
Corrected and extended by David Wasserman, Nov 16 2007

A219921 Numbers expressible as the sum of four nonnegative fourth-powers in four different ways.

Original entry on oeis.org

236674, 260658, 282018, 300834, 334818, 478338, 637794, 650034, 650658, 671778, 708483, 708834, 729938, 789378, 811538, 816578, 832274, 849954, 941859, 989043, 1042083, 1045539, 1099203, 1099458, 1102258, 1179378, 1243074, 1257954, 1283874, 1323234, 1334979
Offset: 1

Views

Author

Keywords

Comments

A natural extension of the two-sets-of-two-cubes taxi-cab numbers (A001235).
a(4) is the first number which contains distinct fourth-powers in all four sets of four, and is therefore also A146756(4).

Examples

			a(1) = 236674 = 1^4+2^4+7^4+22^4 = 3^4+6^4+18^4+19^4 = 7^4+14^4+16^4+19^4 = 8^4+16^4+17^4+17^4.
		

Crossrefs

Other sums of four fourth powers: A176197, A133526.
Showing 1-3 of 3 results.