cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176200 A symmetrical triangle T(n, m) = 2*Eulerian(n+1, m) -1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 21, 21, 1, 1, 51, 131, 51, 1, 1, 113, 603, 603, 113, 1, 1, 239, 2381, 4831, 2381, 239, 1, 1, 493, 8585, 31237, 31237, 8585, 493, 1, 1, 1003, 29215, 176467, 312379, 176467, 29215, 1003, 1, 1, 2025, 95679, 910383, 2620707, 2620707, 910383, 95679, 2025, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 11 2010

Keywords

Comments

Row sums are: {1, 2, 9, 44, 235, 1434, 10073, 80632, 725751, 7257590, 79833589, ...}.

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   7,    1;
  1,  21,   21,     1;
  1,  51,  131,    51,     1;
  1, 113,  603,   603,   113,    1;
  1, 239, 2381,  4831,  2381,  239,   1;
  1, 493, 8585, 31237, 31237, 8585, 493, 1;
		

Crossrefs

Programs

  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;
    [[2*Eulerian(n+1,k)-1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j,0,k+1}];
    T[n_, m_]:= 2*Eulerian[n+1, m]-1;
    Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten (* modified by G. C. Greubel, Apr 25 2019 *)
  • PARI
    Eulerian(n,k) = sum(j=0,k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n); {T(n,k) = 2*Eulerian(n+1,k) - 1 };
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
    def T(n,k): return 2*Eulerian(n+1,k)-1
    [[T(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Apr 25 2019

Formula

T(n, m) = 2*Eulerian(n+1, m) - 1, where Eulerian(n, k) = A008292(n,k).

Extensions

Edited by G. C. Greubel, Apr 25 2019