A176204 Triangle T(n, k) = 4 * A008292(n+1, k) - 3, read by rows.
1, 1, 1, 1, 13, 1, 1, 41, 41, 1, 1, 101, 261, 101, 1, 1, 225, 1205, 1205, 225, 1, 1, 477, 4761, 9661, 4761, 477, 1, 1, 985, 17169, 62473, 62473, 17169, 985, 1, 1, 2005, 58429, 352933, 624757, 352933, 58429, 2005, 1, 1, 4049, 191357, 1820765, 5241413, 5241413, 1820765, 191357, 4049, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 13, 1; 1, 41, 41, 1; 1, 101, 261, 101, 1; 1, 225, 1205, 1205, 225, 1; 1, 477, 4761, 9661, 4761, 477, 1; 1, 985, 17169, 62473, 62473, 17169, 985, 1; 1, 2005, 58429, 352933, 624757, 352933, 58429, 2005, 1; 1, 4049, 191357, 1820765, 5241413, 5241413, 1820765, 191357, 4049, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; [[4*Eulerian(n+1,k) -3: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Mar 12 2020
-
Maple
A008292:= (n,k) -> add((-1)^j*binomial(n+1,j)*(k-j+1)^n, j=0..k+1); A176204:= (n,k,q) -> 2^q*( A008292(n+1,k) -1) + 1; seq(seq( A176204(n,k,2), k=0..n), n=0..12); # G. C. Greubel, Mar 12 2020
-
Mathematica
Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j,0,k+1}]; T[n_, m_, q_]:= 2^q*Eulerian[n+1, m] - 2^q +1; Table[T[n, m, 2], {n,0,12}, {m,0,n}]//Flatten (* modified by G. C. Greubel, Mar 12 2020 *)
-
PARI
Eulerian(n,k) = sum(j=0,k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n); T(n,k,q) = 2^q*Eulerian(n+1,k) - (2^q - 1); \\ G. C. Greubel, Mar 12 2020
-
Sage
def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1)) def T(n,k,q): return 2^q*Eulerian(n+1,k) - 2^q + 1 [[T(n,k,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 12 2020
Formula
T(n, m, q) = 2*T(n, m, q-1) - 1, with T(n, m, 0) = A008292(n+1, m).
From G. C. Greubel, Mar 12 2020: (Start)
T(n, k, q) = 2^q * A008292(n+1, k) - (2^q - 1).
Sum_{k=0..n} T(n, k, q) = (n+1)*( 2^q * n! - 2^q + 1) (row sums). (End)
Extensions
Edited by G. C. Greubel, Mar 12 2020
Comments