cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176223 Natural numbers k which give a prime by the function f(k) = 2 * k + 13 for at least two iterations.

Original entry on oeis.org

2, 5, 8, 17, 23, 35, 38, 47, 50, 68, 77, 80, 107, 110, 113, 140, 152, 170, 218, 227, 233, 245, 248, 278, 287, 317, 320, 332, 353, 365, 380, 392, 407, 437, 458, 467, 485, 500, 518, 542, 575, 590, 602, 605, 623, 635, 638, 710, 740, 743, 770, 803, 827, 842
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 12 2010

Keywords

Comments

n, p = f(k) = 2 * k + 13, q = f(f(k)) = 4 * k + 39; p and q to be primes.
List of (k,p,q):
(2,17,47) (5,23,59) (8,29,71) (17,47,107) (23,59,131)
(35,83,179) (38,89,191) (47,107,227) (50,113,239) (68,149,311)
(77,167,347) (80,173,359) (107,227,467) (110,233,479) (113,239,491)
(140,293,599) (152,317,647) (170,353,719) (218,449,911) (227,467,947)
(233,479,971) (245,503,1019) (248,509,1031) (278,569,1151) (287,587,1187)
(317,647,1307) (320,653,1319) (332,677,1367) (353,719,1451) (365,743,1499)

Examples

			2 * 2 + 13 = 17 = prime(7), 4 * 2 + 39 = 47 = prime(15), 2 is first term.
2 * 5 + 13 = 23 = prime(9), 4 * 5 + 39 = 59 = prime(17), 5 is 2nd term.
		

Crossrefs

Programs

  • Mathematica
    k13Q[n_]:=AllTrue[Rest[NestList[2#+13&,n,2]],PrimeQ]; Select[Range[ 1000],k13Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 20 2020 *)
  • PARI
    isok(n) = isprime(p=2*n+13) && isprime(2*p+13) \\ Michel Marcus, Jun 28 2013

Extensions

More terms from Michel Marcus, Jun 28 2013