A176232 Determinant of the n X n matrix with rows (1!,-1,0,...,0), (1, 2!,-1,0,...,0), (0,1,3!,-1,0,...,0), ..., (0,0,...,1,n!).
1, 1, 3, 19, 459, 55099, 39671739, 199945619659, 8061807424322619, 2925468678338137602379, 10615940739961495538937237819, 423754383328897950597328272711061579, 202979027621555455188781938315330372976764219
Offset: 0
Keywords
Examples
For n = 1, det[1] = 1. For n = 2, det([[1,-1],[1,2]]) = 3, and the continued fraction expansion is 3/2 = [1!,2!]. For n = 3, det([[1,-1, 0],[1,2,-1],[0,1,6]]) = 19, and the continued fraction expansion is 19/det([[2,-1],[1,6]]) = 19/13 = [1!,2!,3!]. For n = 4, det([[1,-1,0,0],[1,2,-1,0],[0,1,6,-1],[0,0,1,24]]) = 459, and the continued fraction expansion is 459/det([[2,-1,0],[1,6,-1],[0,1,24]]) = 459/314 = [1!,2!,3!,4!].
References
- J. M. De Koninck, A. Mercier, 1001 problèmes en théorie classique des nombres. Collection ellipses (2004), p.115.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..43
Programs
-
Maple
for n from 15 by -1 to 1 do:x0:=n!:for p from n by -1 to 2 do : x0:= (p-1)! + 1/x0 :od:print(x0):od :
Formula
a(0) = 1, a(1) = 1, a(n) = n! * a(n-1) + a(n-2). - Daniel Suteu, Dec 20 2016
a(n) ~ c * BarnesG(n+2), where c = 1.5943186620010986362991550255196986158205795892595646967623357407966... - Vaclav Kotesovec, Jun 05 2018
Extensions
a(0)=1 prepended by Alois P. Heinz, Dec 20 2016
Comments