cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176232 Determinant of the n X n matrix with rows (1!,-1,0,...,0), (1, 2!,-1,0,...,0), (0,1,3!,-1,0,...,0), ..., (0,0,...,1,n!).

Original entry on oeis.org

1, 1, 3, 19, 459, 55099, 39671739, 199945619659, 8061807424322619, 2925468678338137602379, 10615940739961495538937237819, 423754383328897950597328272711061579, 202979027621555455188781938315330372976764219
Offset: 0

Views

Author

Michel Lagneau, Apr 12 2010

Keywords

Comments

Each determinant is the numerator of the fraction x(n)/y(n) = [1!, 2!, ..., n!] (the simple continued fraction). The value x(n) is obtained by computing the determinant det(n X n) from the last column. The value y(n) is obtained by computing this determinant after removal of the first row and the first column (see example below).
Also denominator of fraction equal to the continued fraction [ 0; 1!, 2!, ... , n! ]. - Seiichi Manyama, Jun 05 2018

Examples

			For n = 1, det[1] = 1.
For n = 2, det([[1,-1],[1,2]]) = 3, and the continued fraction expansion is 3/2 = [1!,2!].
For n = 3, det([[1,-1, 0],[1,2,-1],[0,1,6]]) = 19, and the continued fraction expansion is 19/det([[2,-1],[1,6]]) = 19/13 = [1!,2!,3!].
For n = 4, det([[1,-1,0,0],[1,2,-1,0],[0,1,6,-1],[0,0,1,24]]) = 459, and the continued fraction expansion is 459/det([[2,-1,0],[1,6,-1],[0,1,24]]) = 459/314 = [1!,2!,3!,4!].
		

References

  • J. M. De Koninck, A. Mercier, 1001 problèmes en théorie classique des nombres. Collection ellipses (2004), p.115.

Crossrefs

Programs

  • Maple
    for n from 15 by -1 to 1 do:x0:=n!:for p from n by -1 to 2 do : x0:= (p-1)! + 1/x0 :od:print(x0):od :

Formula

a(0) = 1, a(1) = 1, a(n) = n! * a(n-1) + a(n-2). - Daniel Suteu, Dec 20 2016
a(n) ~ c * BarnesG(n+2), where c = 1.5943186620010986362991550255196986158205795892595646967623357407966... - Vaclav Kotesovec, Jun 05 2018

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 20 2016