A176248 a(n) is the least odd multiple of 3, k, such that k*2^n-1 is a Sophie Germain prime.
3, 3, 3, 15, 45, 3, 99, 45, 51, 141, 153, 177, 411, 45, 45, 267, 237, 75, 75, 207, 111, 111, 123, 159, 57, 375, 1419, 45, 291, 321, 489, 585, 525, 1623, 579, 45, 27, 1293, 1059, 255, 2265, 33, 465, 165, 405, 315, 315, 117, 411, 1725
Offset: 1
Examples
3*2^6 - 1 = 3*64 - 1 = 191 that is the 15th Sophie Germain prime, so a(6) = 3. - _Bernard Schott_, Sep 16 2019
Links
- Pierre CAMI, Table of n, a(n) for n = 1..1073
Programs
-
Magma
sol:=[]; for n in [1..50] do k:=3; while not IsPrime(k*2^n-1) or not IsPrime(2*(k*2^n-1)+1) do k:=k+6; end while; Append(~sol,k); end for; sol; // Marius A. Burtea, Sep 16 2019
-
PARI
a(n) = my(k=1, p); while(!(isprime(p=3*k*2^n-1) && isprime(2*p+1)), k+=2); 3*k; \\ Michel Marcus, Sep 16 2019
Extensions
Name, data and b-file corrected by Michel Marcus, Sep 16 2019