A176261 Triangle T(n,k) = A006130(k) - A006130(n) + A006130(n-k) read by rows.
1, 1, 1, 1, -2, 1, 1, -2, -2, 1, 1, -11, -11, -11, 1, 1, -20, -29, -29, -20, 1, 1, -56, -74, -83, -74, -56, 1, 1, -119, -173, -191, -191, -173, -119, 1, 1, -290, -407, -461, -470, -461, -407, -290, 1, 1, -650, -938, -1055, -1100, -1100, -1055, -938, -650, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -2, 1; 1, -2, -2, 1; 1, -11, -11, -11, 1; 1, -20, -29, -29, -20, 1; 1, -56, -74, -83, -74, -56, 1; 1, -119, -173, -191, -191, -173, -119, 1; 1, -290, -407, -461, -470, -461, -407, -290, 1; 1, -650, -938, -1055, -1100, -1100, -1055, -938, -650, 1; 1, -1523, -2171, -2459, -2567, -2603, -2567, -2459, -2171, -1523, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A006130.
Programs
-
Magma
A006130:= func< n | &+[Binomial(n-j,j)*3^j: j in [0..n]] >; [A006130(k) -A006130(n) +A006130(n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 24 2019
-
Maple
A176261 := proc(n,k) A006130(k)-A006130(n)+A006130(n-k) ; end proc; # R. J. Mathar, May 03 2013
-
Mathematica
A006130[n_]:= Sum[Binomial[n-j,j]*3^j, {j,0,n}]; T[n_,k_]:= A006130[k] - A006130[n] + A006130[n-k]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Nov 24 2019 *)
-
PARI
A006130(n) = sum(j=0,n,binomial(n-j,j)*3^j); T(n,k) = A006130(k) -A006130(n) +A006130(n-k); \\ G. C. Greubel, Nov 24 2019
-
Sage
def A006130(n): return sum(binomial(n-j,j)*3^j for j in (0..n)) [[A006130(k) -A006130(n) +A006130(n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 24 2019
Formula
T(n,k) = T(n,n-k).
T(n,k) = A006130(k) - A006130(n) + A006130(n-k), where A006130(n) = Sum_{j=0..n} binomial(n-j, j)*3^j. - G. C. Greubel, Nov 24 2019
Comments