A176271 The odd numbers as a triangle read by rows.
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
Offset: 1
Examples
From _Philippe Deléham_, Oct 03 2011: (Start) Triangle begins: 1; 3, 5; 7, 9, 11; 13, 15, 17, 19; 21, 23, 25, 27, 29; 31, 33, 35, 37, 39, 41; 43, 45, 47, 49, 51, 53, 55; 57, 59, 61, 63, 65, 67, 69, 71; 73, 75, 77, 79, 81, 83, 85, 87, 89; (End)
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Nicomachus's Theorem
- Wikipedia, Nikomachos von Gerasa
Crossrefs
Programs
-
Haskell
a176271 n k = a176271_tabl !! (n-1) !! (k-1) a176271_row n = a176271_tabl !! (n-1) a176271_tabl = f 1 a005408_list where f x ws = us : f (x + 1) vs where (us, vs) = splitAt x ws -- Reinhard Zumkeller, May 24 2012
-
Magma
[n^2-n+2*k-1: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 10 2024
-
Maple
A176271 := proc(n,k) n^2-n+2*k-1 ; end proc: # R. J. Mathar, Jun 28 2013
-
Mathematica
Table[n^2-n+2*k-1, {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 10 2024 *)
-
SageMath
flatten([[n^2-n+2*k-1 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 10 2024
Formula
T(n, k) = n^2 - n + 2*k - 1 for 1 <= k <= n.
T(n, k) = A005408(n*(n-1)/2 + k - 1).
T(2*n-1, n) = A016754(n-1) (main diagonal).
T(2*n, n) = A000466(n).
T(2*n, n+1) = A053755(n).
T(n, k) + T(n, n-k+1) = A001105(n), 1 <= k <= n.
T(n, 1) = A002061(n), central polygonal numbers.
T(n, 2) = A027688(n-1) for n > 1.
T(n, 3) = A027690(n-1) for n > 2.
T(n, 4) = A027692(n-1) for n > 3.
T(n, 5) = A027694(n-1) for n > 4.
T(n, 6) = A048058(n-1) for n > 5.
T(n, n-3) = A108195(n-2) for n > 3.
T(n, n-2) = A082111(n-2) for n > 2.
T(n, n-1) = A014209(n-1) for n > 1.
T(n, n) = A028387(n-1).
Sum_{k=1..n} T(n, k) = A000578(n) (Nicomachus's theorem).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A065599(n) (alternating sign row sums).
Sum_{j=1..n} (Sum_{k=1..n} T(j, k)) = A000537(n) (sum of first n rows).
Comments