A176282 Triangle T(n,k) = 1 + A000330(n) - A000330(k) - A000330(n-k), read by rows.
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 21, 16, 1, 1, 25, 37, 37, 25, 1, 1, 36, 57, 64, 57, 36, 1, 1, 49, 81, 97, 97, 81, 49, 1, 1, 64, 109, 136, 145, 136, 109, 64, 1, 1, 81, 141, 181, 201, 201, 181, 141, 81, 1, 1, 100, 177, 232, 265, 276, 265, 232, 177, 100, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 4, 1; 1, 9, 9, 1; 1, 16, 21, 16, 1; 1, 25, 37, 37, 25, 1; 1, 36, 57, 64, 57, 36, 1; 1, 49, 81, 97, 97, 81, 49, 1; 1, 64, 109, 136, 145, 136, 109, 64, 1; 1, 81, 141, 181, 201, 201, 181, 141, 81, 1; 1, 100, 177, 232, 265, 276, 265, 232, 177, 100, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A077028.
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> 1 + k*(n+1)*(n-k) ))); # G. C. Greubel, Nov 24 2019
-
Magma
[1 + k*(n+1)*(n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 24 2019
-
Maple
seq(seq(1 + k*(n+1)*(n-k), k=0..n), n=0..12); # G. C. Greubel, Nov 24 2019
-
Mathematica
(* Set of sequences q=1..10. This sequence is q=2. *) f[n_, k_, q_]:= f[n, k, q] = 1 + Sum[i^q, {i,0,n}] - Sum[i^q, {i,0,k}] - Sum[i^q, {i,0,n-k}]; Table[Flatten[Table[f[n, k, q], {n,0,12}, {k,0,n}]], {q,1,10}] (* Second program *) Table[1 + k*(n+1)*(n-k), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 24 2019 *)
-
PARI
T(n,k) = 1 + k*(n+1)*(n-k); \\ G. C. Greubel, Nov 24 2019
-
Sage
[[1 + k*(n+1)*(n-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 24 2019
Formula
T(n,k) = T(n,n-k).
T(n,k) = 1 + k*(n+1)*(n-k). - G. C. Greubel, Nov 24 2019
Extensions
Edited by R. J. Mathar, May 03 2013
Comments