cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A176283 Triangle T(n,k) = 1 + A000537(n) - A000537(k) - A000537(n-k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 64, 83, 64, 1, 1, 125, 181, 181, 125, 1, 1, 216, 333, 370, 333, 216, 1, 1, 343, 551, 649, 649, 551, 343, 1, 1, 512, 847, 1036, 1097, 1036, 847, 512, 1, 1, 729, 1233, 1549, 1701, 1701, 1549, 1233, 729, 1, 1, 1000, 1721, 2206, 2485, 2576, 2485, 2206, 1721, 1000, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2010

Keywords

Comments

Like A176282 but build on sums of cubes (A000537) instead of sums of squares.
Row sums are {1, 2, 10, 56, 213, 614, 1470, 3088, 5889, 10426, 17402, ...} = (n+1)*(9*n^4 + 6*n^3 - 11*n^2 - 4*n + 60)/60.

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    8,    1;
  1,   27,   27,    1;
  1,   64,   83,   64,    1;
  1,  125,  181,  181,  125,    1;
  1,  216,  333,  370,  333,  216,    1;
  1,  343,  551,  649,  649,  551,  343,    1;
  1,  512,  847, 1036, 1097, 1036,  847,  512,    1;
  1,  729, 1233, 1549, 1701, 1701, 1549, 1233,  729,    1;
  1, 1000, 1721, 2206, 2485, 2576, 2485, 2206, 1721, 1000, 1;
		

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> (4 +n^2*(n+1)^2 -k^2*(k+1)^2 - (n-k)^2*(n-k+1)^2)/4  ))); # G. C. Greubel, Nov 25 2019
  • Magma
    [(4 +n^2*(n+1)^2 -k^2*(k+1)^2 -(n-k)^2*(n-k+1)^2)/4: k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 25 2019
    
  • Maple
    seq(seq(, k=0..n), n=0..12); # G. C. Greubel, Nov 25 2019
  • Mathematica
    (* Set of sequences q=1..10. This sequence is q=3. *)
    f[n_, k_, q_]:= f[n, k, q] = 1 + Sum[i^q, {i,0,n}] - Sum[i^q, {i,0,k}] - Sum[i^q, {i,0,n-k}]; Table[Flatten[Table[f[n, k, q], {n,0,10}, {k,0,n}]], {q,1,10}]
    (* Second program *)
    Table[(4 +n^2*(n+1)^2 -k^2*(k+1)^2 -(n-k)^2*(n-k+1)^2)/4, {n,0,12}, {k,0, n} ]//Flatten (* G. C. Greubel, Nov 25 2019 *)
  • PARI
    T(n,k) = 1 + (n^2*(n+1)^2 - k^2*(k+1)^2 - (n-k)^2*(n-k+1)^2)/4; \\ G. C. Greubel, Nov 25 2019
    
  • Sage
    [[(4 +n^2*(n+1)^2 -k^2*(k+1)^2 -(n-k)^2*(n-k+1)^2)/4 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 25 2019
    

Formula

T(n,k) = T(n,n-k).
T(n, k) = (4 + n^2*(n+1)^2 - k^2*(k+1)^2 - (n-k)^2*(n-k+1)^2)/4. - G. C. Greubel, Nov 25 2019

Extensions

Edited by R. J. Mathar, May 03 2013
Showing 1-1 of 1 results.