A176284 Triangle T(n,k) = 1 + 3*n*k*(n-k) read by rows.
1, 1, 1, 1, 7, 1, 1, 19, 19, 1, 1, 37, 49, 37, 1, 1, 61, 91, 91, 61, 1, 1, 91, 145, 163, 145, 91, 1, 1, 127, 211, 253, 253, 211, 127, 1, 1, 169, 289, 361, 385, 361, 289, 169, 1, 1, 217, 379, 487, 541, 541, 487, 379, 217, 1, 1, 271, 481, 631, 721, 751, 721, 631, 481, 271, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 7, 1; 1, 19, 19, 1; 1, 37, 49, 37, 1; 1, 61, 91, 91, 61, 1; 1, 91, 145, 163, 145, 91, 1; 1, 127, 211, 253, 253, 211, 127, 1; 1, 169, 289, 361, 385, 361, 289, 169, 1; 1, 217, 379, 487, 541, 541, 487, 379, 217, 1; 1, 271, 481, 631, 721, 751, 721, 631, 481, 271, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A130154.
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> 1 + 3*n*k*(n-k) ))); # G. C. Greubel, Nov 25 2019
-
Magma
[1 + 3*n*k*(n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 25 2019
-
Maple
seq(seq(1 + 3*n*k*(n-k), k=0..n), n=0..12); # G. C. Greubel, Nov 25 2019
-
Mathematica
Flatten[Table[1+3n k(n-k),{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jul 03 2013 *)
-
PARI
T(n,k) = 1 + 3*n*k*(n-k); \\ G. C. Greubel, Nov 25 2019
-
Sage
[[1 + 3*n*k*(n-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 25 2019
Formula
T(n,k) = T(n,n-k).
T(n,k) = 1 + 3*n*k*(n-k).
Extensions
Edited by R. J. Mathar, May 03 2013
Comments