cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176289 Denominators of the rational sequence with e.g.f. (x/2)*(1+exp(-x))/(1-exp(-x)).

Original entry on oeis.org

1, 1, 6, 1, 30, 1, 42, 1, 30, 1, 66, 1, 2730, 1, 6, 1, 510, 1, 798, 1, 330, 1, 138, 1, 2730, 1, 6, 1, 870, 1, 14322, 1, 510, 1, 6, 1, 1919190, 1, 6, 1, 13530, 1, 1806, 1, 690, 1, 282, 1, 46410, 1, 66, 1, 1590, 1, 798, 1, 870, 1, 354, 1, 56786730, 1, 6, 1, 510
Offset: 0

Views

Author

Paul Curtz, Apr 14 2010

Keywords

Comments

Denominator of the Bernoulli number B_n, except a(1)=1. A minor variant of the Bernoulli denominators A027642.
The sequence of fractions A164555(n)/A027642(n) = 1/1, 1/2, 1/6, 0/1, -1/30, ...
and the sequence of fractions A027641(n)/A027642(n) = B_n = 1/1, -1/2, 1/6, 0/1, -1/30, ... differ only (by a sign) at n=1. The arithmetic mean of both sequences is 1/1, 0/1, 1/6, 0/1, -1/30, ..., equal to the aerated sequence A000367(n)/A002445(n). The definition here provides the denominators of this sequence of arithmetic means.

Crossrefs

Cf. A027641, A027642, A164555, A176327 (numerators), A141056.

Programs

  • Maple
    seq(denom((bernoulli(i,0)+bernoulli(i,1))/2),i=0..64); # Peter Luschny, Jun 17 2012
  • Mathematica
    Join[{1,1},Rest[Denominator[BernoulliB[Range[80]]]]] (* Harvey P. Dale, Jun 18 2012 *)
  • PARI
    apply(deniominator, Vec(serlaplace((x/2)*(1+exp(-x))/(1-exp(-x))))) \\ Charles R Greathouse IV, Sep 26 2017
    
  • PARI
    A176289(n) = if(1==n,n,denominator(bernfrac(n))); \\ Antti Karttunen, Dec 19 2018

Formula

a(2*n) = A002445(n), a(2*n+1)=1.
a(n) = A027642(n) for n <> 1.

Extensions

More terms from Harvey P. Dale, May 03 2012
New name from Peter Luschny, Jun 18 2012