A176290 Hankel transform of A105872.
1, 2, -3, -75, -650, -4507, -28267, -167406, -955271, -5310911, -28962586, -155616567, -826329687, -4345964510, -22675946635, -117526104883, -605643805098, -3105646720979, -15856669574339, -80653146223054
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-27,10,-1).
Crossrefs
Cf. A105872.
Programs
-
GAP
a:=[1,2,-3,-75];; for n in [5..30] do a[n]:=10*a[n-1]-27*a[n-2]+10*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Nov 25 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2 )); // G. C. Greubel, Nov 25 2019 -
Maple
seq(coeff(series((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2, x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 25 2019
-
Mathematica
LinearRecurrence[{10,-27,10,-1},{1,2,-3,-75},30] (* Harvey P. Dale, Oct 29 2017 *)
-
PARI
my(x='x+O('x^30)); Vec((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2) \\ G. C. Greubel, Nov 25 2019
-
Sage
def A176290_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2).list() A176290_list(30) # G. C. Greubel, Nov 25 2019
Formula
G.f.: (1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2.