A176305 Triangle T(n,k) = 1 -A002627(k) -A002627(n-k) +A002627(n), read by rows.
1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 31, 36, 31, 1, 1, 165, 194, 194, 165, 1, 1, 1031, 1194, 1218, 1194, 1031, 1, 1, 7423, 8452, 8610, 8610, 8452, 7423, 1, 1, 60621, 68042, 69066, 69200, 69066, 68042, 60621, 1, 1, 554249, 614868, 622284, 623284, 623284, 622284, 614868, 554249, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 2, 1; 1, 7, 7, 1; 1, 31, 36, 31, 1; 1, 165, 194, 194, 165, 1; 1, 1031, 1194, 1218, 1194, 1031, 1; 1, 7423, 8452, 8610, 8610, 8452, 7423, 1; 1, 60621, 68042, 69066, 69200, 69066, 68042, 60621, 1; 1, 554249, 614868, 622284, 623284, 623284, 622284, 614868, 554249, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
b:= func< n | Factorial(n)*(Exp(1)-1)>; function T(n,k) if k eq 0 or k eq n then return 1; else return 1 +Floor(b(n)) -Floor(b(k)) -Floor(b(n-k)); end if; return T; end function; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
-
Maple
T:= proc(n, k) option remember; if k=0 or k=n then 1 else 1 +floor(n!*(exp(1)-1)) -floor(k!*(exp(1)-1)) -floor((n-k)!*(exp(1)-1)) fi; end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
-
Mathematica
(* First program *) a[n_]:= a[n] = If[n==0,0,n*a[n-1] +1]; T[n_, k_]:= T[n, k] = 1 -(a[k] +a[n-k] -a[n]); Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Second program *) T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, 1 +Floor[n!*(E-1)] -Floor[k!*(E-1)] - Floor[(n-k)!*(E-1)]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 26 2019 *)
-
PARI
T(n,k) = if(k==0 || k==n, 1, 1 +floor(n!*(exp(1)-1)) -floor(k!*(exp(1)-1)) -floor((n-k)!*(exp(1)-1)) ); \\ G. C. Greubel, Nov 26 2019
-
Sage
@CachedFunction def b(n): return factorial(n)*(exp(1)-1); def T(n, k): if (k==0 or k==n): return 1 else: return 1 +floor(b(n)) -floor(b(k)) -floor(b(n-k)) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
Formula
T(n,k) = T(n,n-k).
Comments