cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176335 Central coefficients T(2n,n) of number triangle A176331.

Original entry on oeis.org

1, 3, 28, 315, 3876, 50358, 678112, 9365499, 131809060, 1882294128, 27193657008, 396600597198, 5829739893264, 86262567856650, 1283677784658528, 19196304797150715, 288295493121264420, 4346056823245242420
Offset: 0

Views

Author

Paul Barry, Apr 15 2010

Keywords

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
      end;
    List([0..30], n-> T(2*n,n) ); # G. C. Greubel, Dec 07 2019
  • Magma
    T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
    [T(2*n,n): n in [0..30]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    A176335 := proc(n)
        add((-1)^k*binomial(k,n)^2,k=0..2*n);
    end proc: # R. J. Mathar, Feb 10 2015
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[2*n, n], {n,0,30}] (* G. C. Greubel, Dec 07 2019 *)
  • PARI
    T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k));
    vector(31, n, T(2*(n-1), n-1) ) \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
    [T(2*n, n) for n in (0..30)] # G. C. Greubel, Dec 07 2019
    

Formula

a(n) = Sum_{k=0..2n} C(k,n)^2*(-1)^k.
Conjecture: 224*n^2*(n-1)*a(n) - 48*(n-1)*(65*n^2 - 36*n - 13)*a(n-1) + 4*(-1839*n^3 + 11081*n^2 - 21932*n + 14280)*a(n-2) + 12*(-81*n^3 + 326*n^2 - 591*n + 562)*a(n-3) - (n-3)*(1853*n^2 - 7403*n + 7140)*a(n-4) - 12*(n-4)*(2*n-7)^2*a(n-5) = 0. - R. J. Mathar, Feb 10 2015
From Peter Bala, Aug 08 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n+k, k)^2. Cf. A112029.
Conjecture (assuming an offset of 1): the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 5 and all positive integers n and r [added Nov 29 2024: proved by Coster. See Theorem 4]. (End)
a(n) ~ 2^(4*n+2) / (5*Pi*n). - Vaclav Kotesovec, Aug 08 2024
a(n) = binomial(2*n, n)^2 * hypergeom([1, -n, -n], [-2*n, -2*n], -1). - Peter Luschny, Nov 29 2024