A176338 a(n) = 1 + (1-3^n)*a(n-1) for n >=1, a(0) = 0.
0, 1, -7, 183, -14639, 3542639, -2579041191, 5637784043527, -36983863325537119, 727916397973221576159, -42982007467522787629036631, 7614090694841791737333323035127, -4046432358866721800888421193787892879
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..64
Crossrefs
Cf. A176337.
Programs
-
GAP
a:= function(n,q) if n=0 then return 0; else return 1 - (q^n-1)*a(n-1,q); fi; end; List([0..15], n-> a(n,3) ); # G. C. Greubel, Dec 07 2019
-
Magma
function a(n,q) if n eq 0 then return 0; else return 1 - (q^n-1)*a(n-1,q); end if; return a; end function; [a(n,3): n in [0..15]]; // G. C. Greubel, Dec 07 2019
-
Maple
A176338 := proc(n) if n = 0 then 0; else 1+(1-3^n)*procname(n-1) ; end if; end proc: # R. J. Mathar, May 04 2013
-
Mathematica
a[n_, q_]:= a[n, q]= If[n==0, 0, (1-q^n)*a[n-1, q] +1]; Table[a[n, 3], {n,0,15}] nxt[{n_,a_}]:={n+1,a(1-3^(n+1))+1}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Dec 31 2024 *)
-
PARI
q=3; a(n,q) = if(n==0, 0, 1 -(q^n-1)*a(n-1,q) ); vector(16, n, a(n-1,3)) \\ G. C. Greubel, Dec 07 2019
-
Sage
def a(n, q): if (n==0): return 0 else: return 1 - (q^n-1)*a(n-1,q) [a(n,3) for n in (0..15)] # G. C. Greubel, Dec 07 2019