A176410 A symmetrical triangle of adjusted polynomial coefficients based on Hermite orthogonal polynomials.
1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, -191, 2113, -191, 1, 1, 1, 1, 1, 1, 1, 1, 7681, -337919, 7681, -337919, 7681, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -430079, 47738881, -430079, 180203521, -430079, 47738881, -430079, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 9, 1; 1, 1, 1, 1; 1, -191, 2113, -191, 1; 1, 1, 1, 1, 1, 1; 1, 7681, -337919, 7681, -337919, 7681, 1; 1, 1, 1, 1, 1, 1, 1, 1;
Links
- G. C. Greubel, Rows n = 0..50 of triangle, flattened
Crossrefs
Cf. A060821.
Programs
-
Mathematica
T[n_, m_]:= CoefficientList[HermiteH[n, x], x][[m + 1]]Reverse[ CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[ HermiteH[n, x], x][[1]]Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1; Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten
Extensions
Edited by G. C. Greubel, Apr 26 2019
Comments