cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176479 a(n) = (n+1)*A001003(n).

Original entry on oeis.org

1, 2, 9, 44, 225, 1182, 6321, 34232, 187137, 1030490, 5707449, 31760676, 177435297, 994551222, 5590402785, 31500824304, 177880832001, 1006362234162, 5703029112297, 32367243171740, 183945502869345, 1046646207221582, 5961966567317649, 33995080211156904
Offset: 0

Views

Author

Paul Barry, Apr 18 2010

Keywords

Comments

Central coefficients T(2n,n) of the Riordan array ((1-x)/(1-2x), x(1-x)/(1-2x)), A105306.
a(n) counts the bi-degree sequences of directed trees (i.e., digraphs whose underlying graph is a tree) with n edges. - Nikos Apostolakis, Dec 31 2016
a(n) is also the number of Dyck paths having exactly n peaks in level 1 and n peaks in level 2 and no other peaks. a(2) = 9: /\/\//\/\\, /\//\/\\/\, //\/\\/\/\, /\/\//\\//\\, /\//\\/\//\\, /\//\\//\\/\, //\\/\/\//\\, //\\/\//\\/\, //\\//\\/\/\. - Alois P. Heinz, Jun 20 2017
For n>0, a(n) is the number of ordered trees with n+1 leaves, no node of outdegree 1, and having one of its leaves marked. - Juan B. Gil, Jan 03 2024

Crossrefs

Row n=2 of A288972.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
         (6*n-3)/n*a(n-1) -(n-2)/(n-1)*a(n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 22 2017
  • Mathematica
    a[n_] := Sum[Binomial[n - 1, k - 1]*Binomial[n + k, n], {k, 0, n}]; Array[a, 25, 0] (* or *)
    CoefficientList[ Series[1/4 - (x - 3)/(4 Sqrt[x^2 - 6x +1]), {x, 0, 25}], x] (* Robert G. Wilson v, Dec 31 2016 *)
    Table[(n+1)Hypergeometric2F1[1-n, -n, 2, 2], {n,0,21}] (* Peter Luschny, Jan 02 2017 *)

Formula

E.g.f.: 1+exp(3*x)*Bessel_I(1,2*sqrt(2)*x)/sqrt(2) +int(exp(3*x) *Bessel_I(1,2*sqrt(2)*x) /(sqrt(2)*x),x).
G.f.: 1/4 - (x-3)/(4*sqrt(x^2-6*x+1)). - Dmitry Kruchinin, Aug 31 2012
Conjecture: n*(n-1)*a(n) -3*(2*n-1)*(n-1)*a(n-1) +n*(n-2)*a(n-2) = 0. - R. J. Mathar, Dec 03 2014
a(n) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(n+k,n). - Nikos Apostolakis, Dec 31 2016
a(n) = (n+1)*hypergeom([1-n, -n], [2], 2). - Peter Luschny, Jan 02 2017