A176479 a(n) = (n+1)*A001003(n).
1, 2, 9, 44, 225, 1182, 6321, 34232, 187137, 1030490, 5707449, 31760676, 177435297, 994551222, 5590402785, 31500824304, 177880832001, 1006362234162, 5703029112297, 32367243171740, 183945502869345, 1046646207221582, 5961966567317649, 33995080211156904
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021).
- Juan B. Gil, Emma G. Hoover, and Jessica A. Shearer, Bijections between colored compositions, Dyck paths, and polygon partitions, arXiv:2403.04575 [math.CO], 2024.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- V. V. Kruchinin and D. V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, arXiv preprint arXiv:1206.0877 [math.CO], 2012, and J. Int. Seq. 15 (2012) #12.9.3
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n+1, (6*n-3)/n*a(n-1) -(n-2)/(n-1)*a(n-2)) end: seq(a(n), n=0..25); # Alois P. Heinz, Jun 22 2017
-
Mathematica
a[n_] := Sum[Binomial[n - 1, k - 1]*Binomial[n + k, n], {k, 0, n}]; Array[a, 25, 0] (* or *) CoefficientList[ Series[1/4 - (x - 3)/(4 Sqrt[x^2 - 6x +1]), {x, 0, 25}], x] (* Robert G. Wilson v, Dec 31 2016 *) Table[(n+1)Hypergeometric2F1[1-n, -n, 2, 2], {n,0,21}] (* Peter Luschny, Jan 02 2017 *)
Formula
E.g.f.: 1+exp(3*x)*Bessel_I(1,2*sqrt(2)*x)/sqrt(2) +int(exp(3*x) *Bessel_I(1,2*sqrt(2)*x) /(sqrt(2)*x),x).
G.f.: 1/4 - (x-3)/(4*sqrt(x^2-6*x+1)). - Dmitry Kruchinin, Aug 31 2012
Conjecture: n*(n-1)*a(n) -3*(2*n-1)*(n-1)*a(n-1) +n*(n-2)*a(n-2) = 0. - R. J. Mathar, Dec 03 2014
a(n) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(n+k,n). - Nikos Apostolakis, Dec 31 2016
a(n) = (n+1)*hypergeom([1-n, -n], [2], 2). - Peter Luschny, Jan 02 2017
Comments