cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176487 Triangle read by rows: T(n,k) = binomial(n,k) + A008292(n+1,k+1) - 1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 71, 29, 1, 1, 61, 311, 311, 61, 1, 1, 125, 1205, 2435, 1205, 125, 1, 1, 253, 4313, 15653, 15653, 4313, 253, 1, 1, 509, 14635, 88289, 156259, 88289, 14635, 509, 1, 1, 1021, 47875, 455275, 1310479, 1310479, 455275, 47875, 1021, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 19 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    5,     1;
  1,   13,    13,      1;
  1,   29,    71,     29,       1;
  1,   61,   311,    311,      61,       1;
  1,  125,  1205,   2435,    1205,     125,      1;
  1,  253,  4313,  15653,   15653,    4313,    253,     1;
  1,  509, 14635,  88289,  156259,   88289,  14635,   509,    1;
  1, 1021, 47875, 455275, 1310479, 1310479, 455275, 47875, 1021,   1;
		

Crossrefs

Programs

  • Magma
    A176487:= func< n, k | Binomial(n, k) + EulerianNumber(n+1, k) - 1 >;
    [A176487(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 31 2024
    
  • Maple
    A176487 := proc(n,k)
        binomial(n,k)+A008292(n+1,k+1)-1 ;
    end proc: # R. J. Mathar, Jun 16 2015
  • Mathematica
    Needs["Combinatorica`"];
    T[n_, k_, 0]:= Binomial[n, k];
    T[n_, k_, 1]:= Eulerian[1 + n, k];
    T[n_, k_, q_]:= T[n,k,q] = T[n,k,q-1] + T[n,k,q-2] - 1;
    Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    # from sage.all import * # (use for Python)
    from sage.combinat.combinat import eulerian_number
    def A176487(n,k): return binomial(n,k) +eulerian_number(n+1,k) -1
    print(flatten([[A176487(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 31 2024

Formula

T(n, k) = A007318(n,k) + A008292(n+1,k+1) - 1, 0 <= k <= n.
Sum_{k=0..n} T(n, k) = 2^n - n + A033312(n+1) (row sums).
T(n, k) = 2*A141689(n+1,k+1) - 1. - R. J. Mathar, Jan 19 2011
From G. C. Greubel, Dec 31 2024: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A036563(n+1).
Sum_{k=0..n} (-1)^k * T(n,k) = ((-1)^(n/2)*A000182(n/2 + 1) - 1)*(1 + (-1)^n)/2 + [n=0]. (End)