A176494 Least m >= 1 for which |2^m - prime(n)| is prime.
3, 1, 1, 2, 1, 2, 1, 2, 4, 1, 3, 2, 1, 2, 4, 4, 1, 3, 2, 1, 3, 2, 4, 3, 2, 1, 2, 1, 2, 47, 2, 6, 1, 8, 1, 3, 5, 2, 4, 4, 1, 6, 1, 2, 1, 5, 5, 2, 1, 2, 4, 1, 8, 4, 6, 8, 1, 3, 2, 1, 4, 7, 2, 1, 2, 9, 791, 4, 1, 2, 8, 3, 9, 5, 2, 4, 3, 2, 3, 8, 1, 6, 1, 3, 2, 4, 3, 2, 1, 2, 4, 3, 2, 3
Offset: 2
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 2..340
Programs
-
Mathematica
lm[n_]:=Module[{m=1},While[!PrimeQ[Abs[2^m-n]],m++];m]; Table[lm[i],{i,Prime[ Range[2,100]]}] (* Harvey P. Dale, Aug 11 2014 *)
Extensions
Beginning with a(31), the terms were calculated by Zak Seidov - private communication, Apr 20 2010
Sequence extended by R. J. Mathar via the Seqfan Discussion List, Aug 15 2010
Comments