A176500 a(n) = 2*Farey(Fibonacci(n + 1)) - 3.
1, 3, 7, 19, 43, 115, 279, 719, 1879, 4911, 12659, 33235, 86715, 226315, 592767, 1551791, 4060203, 10630767, 27825227, 72843667, 190710291, 499271047, 1307051711, 3421933647, 8958716547, 23453948495, 61403187051, 160755514791, 420862602279, 1101832758583
Offset: 1
Keywords
Examples
n = 5, m = Fibonacci(5 + 1) = 8, Farey(8) = 23, 2Farey(m) - 3 = 43.
Links
- Antoine Mathys, Table of n, a(n) for n = 1..50
- Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000).
- Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (Apr 20 2010).
- Sameen Ahmed KHAN, Mathematica notebook 1
- Sameen Ahmed KHAN, Mathematica notebook 2
- Hugo Pfoertner, Ratio for series-parallel networks, Plot2 of A048211(n)/a(n).
- Hugo Pfoertner, Ratio for planar networks with generalized bridges, Plot2 of A337516(n)/a(n).
- Hugo Pfoertner, Ratio for arbitrary networks, Plot2 of A337517(n)/a(n).
Programs
-
Magma
[2*(&+[EulerPhi(k):k in [1..Fibonacci(n+1)]])-1:n in [1..30]]; // Marius A. Burtea, Jul 26 2019
-
Mathematica
a[n_] := 2 Sum[EulerPhi[k], {k, 1, Fibonacci[n+1]}] - 1; Table[an = a[n]; Print[an]; an, {n, 1, 30}] (* Jean-François Alcover, Nov 03 2018, from PARI *)
-
PARI
a(n) = 2*sum(k=1,fibonacci(n+1),eulerphi(k))-1 \\ Charles R Greathouse IV, Oct 07 2016
Formula
a(n) = 2 * A176499(n) - 3.
Extensions
a(26)-a(28) from Sameen Ahmed Khan, May 02 2010
a(29)-a(30) from Antoine Mathys, Aug 06 2018
Comments