A176566 Triangle T(n, k) = binomial(n*(n+1)/2 + k, k), read by rows.
1, 1, 1, 1, 2, 3, 1, 4, 10, 20, 1, 7, 28, 84, 210, 1, 11, 66, 286, 1001, 3003, 1, 16, 136, 816, 3876, 15504, 54264, 1, 22, 253, 2024, 12650, 65780, 296010, 1184040, 1, 29, 435, 4495, 35960, 237336, 1344904, 6724520, 30260340, 1, 37, 703, 9139, 91390, 749398, 5245786, 32224114, 177232627, 886163135
Offset: 0
Examples
Square array of T(n, k): 1, 1, 1, 1, 1, 1, 1 ... 1, 1, 1, 1, 1, 1, 1 ... A000012; 1, 2, 3, 4, 5, 6, 7 ... A000027; 1, 4, 10, 20, 35, 56, 84 ... A000292; 1, 7, 28, 84, 210, 462, 924 ... A000579; 1, 11, 66, 286, 1001, 3003, 8008 ... A001287; 1, 16, 136, 816, 3876, 15504, 54264 ... A010968; 1, 22, 253, 2024, 12650, 65780, 296010 ... A010974; Triangle begins as: 1; 1, 1; 1, 2, 3; 1, 4, 10, 20; 1, 7, 28, 84, 210; 1, 11, 66, 286, 1001, 3003; 1, 16, 136, 816, 3876, 15504, 54264; 1, 22, 253, 2024, 12650, 65780, 296010, 1184040; 1, 29, 435, 4495, 35960, 237336, 1344904, 6724520, 30260340; 1, 37, 703, 9139, 91390, 749398, 5245786, 32224114, 177232627, 886163135;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flatten
Programs
-
Magma
[Binomial(Binomial(n, 2) + k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
-
Mathematica
T[n_, k_]= Binomial[Binomial[n, 2] + k, k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
PARI
row(n) = vector(n+1, k, k--; binomial(binomial(n,2) + k, k)); \\ Michel Marcus, Jul 10 2021
-
Sage
flatten([[binomial(binomial(n,2) +k, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 09 2021
Formula
T(n, k) = binomial(binomial(n, 2) + k, k).
Sum_{k=0..n} T(n, k) = A107868(n).