cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176566 Triangle T(n, k) = binomial(n*(n+1)/2 + k, k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 4, 10, 20, 1, 7, 28, 84, 210, 1, 11, 66, 286, 1001, 3003, 1, 16, 136, 816, 3876, 15504, 54264, 1, 22, 253, 2024, 12650, 65780, 296010, 1184040, 1, 29, 435, 4495, 35960, 237336, 1344904, 6724520, 30260340, 1, 37, 703, 9139, 91390, 749398, 5245786, 32224114, 177232627, 886163135
Offset: 0

Views

Author

Roger L. Bagula, Apr 20 2010

Keywords

Examples

			Square array of T(n, k):
  1,  1,   1,    1,     1,     1,      1 ...
  1,  1,   1,    1,     1,     1,      1 ... A000012;
  1,  2,   3,    4,     5,     6,      7 ... A000027;
  1,  4,  10,   20,    35,    56,     84 ... A000292;
  1,  7,  28,   84,   210,   462,    924 ... A000579;
  1, 11,  66,  286,  1001,  3003,   8008 ... A001287;
  1, 16, 136,  816,  3876, 15504,  54264 ... A010968;
  1, 22, 253, 2024, 12650, 65780, 296010 ... A010974;
Triangle begins as:
  1;
  1,  1;
  1,  2,   3;
  1,  4,  10,   20;
  1,  7,  28,   84,   210;
  1, 11,  66,  286,  1001,   3003;
  1, 16, 136,  816,  3876,  15504,   54264;
  1, 22, 253, 2024, 12650,  65780,  296010,  1184040;
  1, 29, 435, 4495, 35960, 237336, 1344904,  6724520,  30260340;
  1, 37, 703, 9139, 91390, 749398, 5245786, 32224114, 177232627, 886163135;
		

Crossrefs

Cf. A107868 (rows sums), A158498.

Programs

  • Magma
    [Binomial(Binomial(n, 2) + k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
    
  • Mathematica
    T[n_, k_]= Binomial[Binomial[n, 2] + k, k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
  • PARI
    row(n) = vector(n+1, k, k--; binomial(binomial(n,2) + k, k)); \\ Michel Marcus, Jul 10 2021
  • Sage
    flatten([[binomial(binomial(n,2) +k, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 09 2021
    

Formula

T(n, k) = binomial(binomial(n, 2) + k, k).
Sum_{k=0..n} T(n, k) = A107868(n).