A176571 Magic constants of 5 X 5 magic squares which consist of consecutive primes.
313, 577, 703, 785, 865, 949, 1111, 1703, 2041, 2071, 2579, 2677, 2809, 3157, 3379, 3545, 4001, 4135, 4873, 5143, 5513, 5549, 5659, 5695, 5731, 5917, 6031, 6277, 6427, 6547, 7951, 8027, 8425, 8873, 9569, 9995, 10147, 10393, 10511, 10717, 11321, 11479, 12127
Offset: 1
Keywords
Examples
Three examples of magic squares, which follow the one with the smallest constant. Array: 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 z = 2885, S = 577 59 61 127 179 151 107 131 167 83 89 173 149 67 79 109 101 139 103 163 71 137 97 113 73 157 Array: 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 z = 3515, S = 703 79 83 149 199 193 107 173 179 131 113 181 167 151 101 103 197 89 97 163 157 139 191 127 109 137 Array: 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 z = 3925, S = 785 97 101 149 211 227 199 179 163 107 137 109 197 167 173 139 223 127 113 191 131 157 181 193 103 151
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..66
- Magic squares of order 5 of the consecutive primes, in Russian
Programs
-
PARI
A176571(n, p=A272386[n], N=5)=sum(i=2, N^2, p=nextprime(p+1), p)/N \\ Uses pre-computed array A272386, but can also be used to find these values: see there. - M. F. Hasler, Oct 30 2018
Extensions
a(33)-a(43) from Arkadiusz Wesolowski, Apr 28 2016
Comments