cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A176616 Primes of the form x^2 + 7*y^2, where x and y=x+1 are consecutive natural numbers.

Original entry on oeis.org

7, 29, 67, 191, 277, 379, 631, 947, 1129, 1327, 2017, 2557, 2851, 4561, 4951, 5779, 6217, 8647, 9181, 12721, 13367, 14029, 15401, 16111, 17579, 20707, 21529, 22367, 24091, 24977, 31627, 36857, 37951, 42487, 43661, 44851, 47279, 53629, 58997
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 22 2010

Keywords

Comments

Primes of the form 8*n^2+14*n+7 = (2*n+2)*(4*n+3)+1 = A000384(2*n+2)+1. - Vincenzo Librandi, Apr 25 2010

Crossrefs

Cf. A176608.
A285790 is an almost identical sequence.

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is 8*n^2+14*n+7 ] // Vincenzo Librandi, Apr 25 2010
  • Mathematica
    Select[Table[x^2+7(x+1)^2,{x,0,100}],PrimeQ] (* Harvey P. Dale, May 03 2024 *)

Extensions

Definition made more accurate by R. J. Mathar, May 04 2010
Corrected (inserted 7) and extended by Vincenzo Librandi, Apr 25 2010
Offset corrected by Mohammed Yaseen, May 20 2023

A176617 Primes of the form 14*k^2 + 26*k + 13.

Original entry on oeis.org

13, 53, 673, 881, 1117, 1381, 1993, 2341, 3121, 4013, 6133, 6733, 8017, 9413, 11717, 12541, 25801, 27017, 36313, 43793, 51973, 53693, 55441, 59021, 64601, 80713, 85021, 96281, 100981, 123517, 128833, 139801, 160073, 169181, 175393, 181717
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 22 2010

Keywords

Comments

All terms are congruent to 1 (mod 4).

Crossrefs

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is 14*n^2+26*n+13 ] // Vincenzo Librandi, Apr 25 2010
  • Mathematica
    Select[Table[14n^2+26n+13, {n,0,200}], PrimeQ] (* Harvey P. Dale, Jan 04 2011 *)

Extensions

Definition made more precise by R. J. Mathar, May 04 2010
Corrected (inserted 13) and extended by Vincenzo Librandi, Apr 25 2010

A176622 Primes of the form x^2 + 17*y^2, where x and y=x+1 are consecutive natural numbers.

Original entry on oeis.org

17, 157, 281, 4021, 8669, 10321, 14057, 16141, 37997, 58369, 71317, 78277, 80669, 93169, 109357, 112181, 117937, 136069, 176221, 179801, 187069, 198241, 213641, 225569, 237821, 285517, 299281, 318137, 393977, 410117, 443369, 507697, 513761
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 22 2010

Keywords

Comments

a(n) is congruent 1 mod 4.

Crossrefs

Programs

  • Magma
    [a: n in [1..250]|IsPrime(a) where a is 18*n^2+34*n+17] // Vincenzo Librandi, Dec 04 2010
  • Mathematica
    Select[Table[18x^2+34x+17,{x,0,200}],PrimeQ] (* Harvey P. Dale, May 06 2017 *)

Extensions

Constraint y=x+1 added to definition by R. J. Mathar, May 04 2010
Extended by Vincenzo Librandi, Apr 25 2010

A176695 Primes of the form x^2 + 29*(x+1)^2.

Original entry on oeis.org

29, 1069, 4297, 7649, 18701, 21817, 34613, 45553, 52837, 60661, 63389, 71933, 77929, 81017, 90641, 107881, 111509, 122753, 155377, 168601, 187073, 201557, 264893, 369409, 376097, 438989, 476029, 498973, 579353, 674701, 711173, 767681
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 24 2010

Keywords

Comments

a(n) == 1 (mod 4).

Crossrefs

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is 30*n^2+58*n+29 ] // Vincenzo Librandi, Apr 25 2010
  • Mathematica
    Select[Table[x^2 + 29(x + 1)^2, {x, 0, 200}], PrimeQ] (* Harvey P. Dale, Dec 12 2010 *)

Extensions

Corrected and extended by Vincenzo Librandi, Apr 25 2010

A346948 Isolated single primes enclosed by six composites on hexagonal spiral board of odd numbers.

Original entry on oeis.org

211, 257, 277, 331, 509, 563, 587, 647, 653, 673, 683, 709, 751, 757, 839, 853, 919, 983, 997, 1087, 1117, 1123, 1163, 1283, 1433, 1447, 1493, 1531, 1579, 1637, 1733, 1777, 1889, 1913, 1973, 1993, 2179, 2207, 2251, 2273, 2287, 2333, 2357, 2399, 2447, 2467
Offset: 1

Views

Author

Ya-Ping Lu, Aug 08 2021

Keywords

Comments

It seems that more isolated primes, m, appear in regions 6*k^2-16*k+13 <= m <= 6*k^2-14*k+7 and 6*k^2-10*k+7 <= m <= 6*k^2-8*k+1 than the other 4 regions, where k (>= 1) is the layer number on the hexagonal board, which is illustrated in A345654.
Numbers of prime terms appearing in the 6 regions and 6 arms of a 10000-layer hexagonal board, with the 299970001 odd numbers up to 599940001, are:
Region Appearance Arm Appearance
---------------------------------- ---------- ----------------- ----------
6*k^2-18*k+15 <= m <= 6*k^2-16*k+9 2681490 m = 6*k^2-16*k+11 692
6*k^2-16*k+13 <= m <= 6*k^2-14*k+7 3192576 m = 6*k^2-14*k+ 9 551
6*k^2-14*k+11 <= m <= 6*k^2-12*k+5 2681571 m = 6*k^2-12*k+ 7 671
6*k^2-12*k+ 9 <= m <= 6*k^2-10*k+3 2681254 m = 6*k^2-10*k+ 5 545
6*k^2-10*k+ 7 <= m <= 6*k^2- 8*k+1 3191045 m = 6*k^2- 8*k+ 3 721
6*k^2- 8*k+ 5 <= m <= 6*k^2- 6*k-1 2680620 m = 6*k^2- 6*k+ 1 1040

Examples

			3 is not a term because four of the six neighbors (1, 5, 13, 15, 17 and 19) are primes.
211 is a term because 211 is a prime and all six neighbors (145, 147, 209, 213, 287 and 289) are composites.
		

Crossrefs

Programs

  • Python
    from sympy import isprime; from math import sqrt, ceil
    def neib(m):
        if m == 1: return [3, 5, 7, 9, 11, 13]
        if m == 3: return [17, 19, 5, 1, 13, 15]
        L = [m for i in range(6)]; n = int(ceil((3+sqrt(6*m + 3))/6)); x=6*n*n; y=12*n
        a0 = x-18*n+15; a1 =x-16*n+11; a2 =x-14*n+9
        a3 = x-y+7; a4 =x-10*n+5; a5 =x-8*n+3; a6 =x-6*n+1
        p = 0 if m==a0 else 1 if m>a0 and ma1 and ma2 and ma3 and ma4 and ma5 and m
    				
Showing 1-5 of 5 results.