A176619 Primes p such that 2p + 3, 4p + 9, 3p + 2 and 9p + 8 are also primes.
5, 7, 97, 167, 397, 607, 2617, 2707, 7687, 12097, 14407, 16787, 19577, 22307, 23827, 24967, 25717, 28547, 31687, 43037, 43517, 46817, 58967, 59617, 63607, 70237, 70957, 78517, 85027, 96797
Offset: 1
Keywords
Examples
2*5 + 3 = 13 = prime(6), 4*5 + 9 = 29 = prime(10), 3*5 + 2 = 17 = prime(7), 9*5 + 8 = 53 = prime(16); 5 = prime(3) = a(1).
References
- Joe Buhler: Algorithmic Number Theory: Third International Symposium, ANTS-III, Springer New York, 1998
- F. Ischebeck: Einladung zur Zahlentheorie, B. I. Wissenschaftsverlag, Mannheim-Leipzig-Wien-Zuerich, 1992
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(100000)|IsPrime(2*p+3) and IsPrime(4*p+9) and IsPrime(3*p+2) and IsPrime(9*p+8 )] // Vincenzo Librandi, Jan 29 2011
-
Mathematica
Select[Prime[Range[10000]],AllTrue[{2#+3,4#+9,3#+2,9#+8},PrimeQ]&] (* Harvey P. Dale, Dec 15 2024 *)
Comments