cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176631 Triangle T(n, k) = 22^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 22, 1, 1, 484, 484, 1, 1, 10648, 234256, 10648, 1, 1, 234256, 113379904, 113379904, 234256, 1, 1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1, 1, 113379904, 26559922791424, 12855002631049216, 12855002631049216, 26559922791424, 113379904, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      22,           1;
  1,     484,         484,             1;
  1,   10648,      234256,         10648,           1;
  1,  234256,   113379904,     113379904,      234256,       1;
  1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1;
		

Crossrefs

Cf. A000326.
Cf. A118190 (q=2), A176627 (q=3), this sequence (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), this sequence (m=20), A176641 (m=26), A176644 (m=38).

Programs

  • Magma
    [22^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
    
  • Mathematica
    T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k)); Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten
    Table[22^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
  • Sage
    flatten([[22^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021

Formula

T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, k) = Product_{j=1..n} (q*(3*q - 1)/2)^j and q = 4.
T(n, k, q) = (binomial(3*q, 2)/3)^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 20. - G. C. Greubel, Jul 01 2021

Extensions

Edited by G. C. Greubel, Jul 01 2021