A176631 Triangle T(n, k) = 22^(k*(n-k)), read by rows.
1, 1, 1, 1, 22, 1, 1, 484, 484, 1, 1, 10648, 234256, 10648, 1, 1, 234256, 113379904, 113379904, 234256, 1, 1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1, 1, 113379904, 26559922791424, 12855002631049216, 12855002631049216, 26559922791424, 113379904, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 22, 1; 1, 484, 484, 1; 1, 10648, 234256, 10648, 1; 1, 234256, 113379904, 113379904, 234256, 1; 1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[22^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
Mathematica
T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k)); Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten Table[22^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
Sage
flatten([[22^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
Formula
T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, k) = Product_{j=1..n} (q*(3*q - 1)/2)^j and q = 4.
T(n, k, q) = (binomial(3*q, 2)/3)^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 20. - G. C. Greubel, Jul 01 2021
Extensions
Edited by G. C. Greubel, Jul 01 2021