A176642 Triangle T(n, k) = 8^(k*(n-k)), read by rows.
1, 1, 1, 1, 8, 1, 1, 64, 64, 1, 1, 512, 4096, 512, 1, 1, 4096, 262144, 262144, 4096, 1, 1, 32768, 16777216, 134217728, 16777216, 32768, 1, 1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1, 1, 2097152, 68719476736, 35184372088832, 281474976710656, 35184372088832, 68719476736, 2097152, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 8, 1; 1, 64, 64, 1; 1, 512, 4096, 512, 1; 1, 4096, 262144, 262144, 4096, 1; 1, 32768, 16777216, 134217728, 16777216, 32768, 1; 1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[8^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
Mathematica
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten With[{m=6}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
Sage
flatten([[8^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
Formula
T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 2.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 2.
T(n, k) = 8^A004247(n,k), where A004247 is interpreted as a triangle. [relation detected by sequencedb.net]. - R. J. Mathar, Jun 30 2021
T(n, k, m) = (m+2)^(k*(n-k)) with m = 6. - G. C. Greubel, Jun 30 2021
Extensions
Edited by R. J. Mathar and G. C. Greubel, Jun 30 2021