cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176737 Expansion of 1 / (1-4*x^2-3*x^3). (4,3)-Padovan sequence.

Original entry on oeis.org

1, 0, 4, 3, 16, 24, 73, 144, 364, 795, 1888, 4272, 9937, 22752, 52564, 120819, 278512, 640968, 1476505, 3399408, 7828924, 18027147, 41513920, 95595360, 220137121, 506923200, 1167334564, 2688104163, 6190107856, 14254420344, 32824743913, 75588004944, 174062236684
Offset: 0

Views

Author

Wolfdieter Lang, Jun 26 2010

Keywords

Comments

See A000931 (Padovan), and the W. Lang link given there.

Crossrefs

Cf. A053088 ((3,2)-Padovan).

Programs

  • Mathematica
    CoefficientList[Series[1/(1-4*x^2-3*x^3),{x,0,40}],x] (* or *) LinearRecurrence[ {0,4,3},{1,0,4},40] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    Vec(1 / ((1 + x)*(1 - x - 3*x^2)) + O(x^40)) \\ Colin Barker, Dec 25 2017

Formula

O.g.f.: 1/((1-x-3*x^2)*(1+x)) = (2-3*x)/(1-x-3*x^2) -1/(1+x).
a(n) = 2*b(n) - 3*b(n-1) - (-1)^n, n>=0, with b(n):=A006130(n) ((1,3)-Fibonacci), b(-1):=0.
From Wolfdieter Lang, Aug 26 2010: (Start)
a(n) = a(n-1) + 3*a(n-2) + (-1)^n, n>=2, a(0)=1, a(1)=0.
Due to the identity for the o.g.f. A(x): A(x)= x*(1 + 3*x)*A(x) + 1/(1+x).
(This recurrence was observed by Gary Detlefs in an Aug 24 2010 email to the author.)
(End)
a(n) = 4*a(n-2) + 3*a(n-3) for n>2. - Harvey P. Dale, Jan 21 2013
a(n) = (-1)^(n+1)*A140165(n+2)-(-1)^n. - R. J. Mathar, Apr 22 2013
a(n) = ((-1)^(1+n) + (2^(-n)*((-2+sqrt(13))*(1+sqrt(13))^n + (1-sqrt(13))^n*(2+sqrt(13)))) / sqrt(13)). - Colin Barker, Dec 25 2017