cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176758 a(n) = Sum_{k=0..floor((n-1)/2)} (3^k-1)*binomial(n, 2*k+1).

Original entry on oeis.org

2, 8, 28, 88, 264, 768, 2192, 6176, 17248, 47872, 132288, 364416, 1001600, 2748416, 7532800, 20627968, 56452608, 154423296, 422276096, 1154447360, 3155544064, 8624177152, 23567831040, 64400793600, 175970803712, 480810303488
Offset: 3

Views

Author

Roger L. Bagula, Apr 25 2010

Keywords

Crossrefs

Programs

  • Magma
    I:=[2,8,28]; [n le 3 select I[n] else 4*Self(n-1) - 2*Self(n-2) +4*Self(n-3): n in [1..31]]; // G. C. Greubel, Sep 17 2021
    
  • Mathematica
    (* First program *)
    a[n_, q_]:= Sum[(q^((m-1)/2) - 1)*Binomial[n, m], {m,1,n,2}];
    Table[a[n, 3], {n, 3, 30}]
    (* Second program *)
    A002605[n_]:= (-I*Sqrt[2])^(n-1)*ChebyshevU[n-1, I/Sqrt[2]];
    Table[(Boole[n==0] - 2^n)/2 + A002605[n], {n, 3, 30}] (* G. C. Greubel, Sep 17 2021 *)
  • Sage
    [(-i*sqrt(2))^(n-1)*chebyshev_U(n-1, i/sqrt(2)) - 2^(n-1) for n in (3..30)] # G. C. Greubel, Sep 17 2021

Formula

From R. J. Mathar, Jan 29 2012: (Start)
a(n) = A002605(n) - 2^(n-1) = 2*A094309(n).
G.f.: 2*x^3/( (1-2*x)*(1-2*x-2*x^2) ). (End)