A176768 Smallest power of 8 whose decimal expansion contains n.
4096, 1, 512, 32768, 64, 512, 64, 32768, 8, 4096, 1073741824, 4398046511104, 512, 134217728, 262144, 2097152, 16777216, 134217728, 1073741824, 68719476736, 2097152, 262144, 2251799813685248, 9223372036854775808, 1073741824
Offset: 0
Examples
a(1) = 1 because 8^0 = 1 has "1" as a substring (not a proper substring, though). a(2) = 512 because 8^3 = 512 has "2" as a substring. a(3) = 32768 because 8^5 = 32768 has "3" as a substring.
Links
- Robert Israel, Table of n, a(n) for n = 0..9999
Programs
-
Maple
F:= proc(dmax) local R,count,x,N,L,d,i,v; count:= 0: x:= 1/8: N:= 10^dmax: while count < N do x:= 8*x; L:= convert(x,base,10); for d from 1 to min(dmax, nops(L)) do for i from 1 to nops(L)-d+1 do v:= add(L[j]*10^(j-i),j=i..i+d-1); if not assigned(R[v]) then count:= count+1; R[v]:= x fi od od od: seq(R[v],v=0..N-1); end proc: F(2); # Robert Israel, Dec 25 2019
-
Mathematica
A176768[n_] := Block[{k = -1}, While[StringFreeQ[IntegerString[8^++k], IntegerString[n]]]; 8^k]; Array[A176768, 50, 0] (* Paolo Xausa, Apr 04 2024 *)
Formula
a(n) = 8^A062525(n). - Michel Marcus, Sep 30 2014
Extensions
More terms from Sean A. Irvine and Jon E. Schoenfield, May 05 2010
a(0)=4096 inserted by Robert Israel, Dec 25 2019
Comments