A176793 A symmetrical triangle read by rows: T(n, k) = 2^n*(q^k - 1)*(q^(n - k) - 1) + 1, where q = 2.
1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 113, 145, 113, 1, 1, 481, 673, 673, 481, 1, 1, 1985, 2881, 3137, 2881, 1985, 1, 1, 8065, 11905, 13441, 13441, 11905, 8065, 1, 1, 32513, 48385, 55553, 57601, 55553, 48385, 32513, 1, 1, 130561, 195073, 225793, 238081, 238081, 225793, 195073, 130561, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 5, 1; 1, 25, 25, 1; 1, 113, 145, 113, 1; 1, 481, 673, 673, 481, 1; 1, 1985, 2881, 3137, 2881, 1985, 1; 1, 8065, 11905, 13441, 13441, 11905, 8065, 1; 1, 32513, 48385, 55553, 57601, 55553, 48385, 32513, 1; 1, 130561, 195073, 225793, 238081, 238081, 225793, 195073, 130561, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
f:= func< n,k,q | 1 + (q^k-1)*(q^(n-k)-1)*2^n >; A176793:= func< n,k | f(n,k,2) >; [A176793(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 02 2024
-
Mathematica
T[n_, k_, q_] := 2^n*(q^k - 1)*(q^(n - k) - 1) + 1; Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def f(n, k, q): return 1 + (q^k -1)*(q^(n-k) -1)*2^n def A176793(n,k): return f(n,k,2) flatten([[A176793(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Oct 02 2024
Formula
T(n, k) = 1 - (f(n+1, 2*k+1, q) - f(n+1, 1, q)) - (f(n+1, 2*n-2*k+1, q) - f(n+1, 2*n+1, q)), where f(n, k, q) = 2^(n-1) * q^((k-1)/2), and q = 2.
From G. C. Greubel, Oct 02 2024: (Start)
T(n, k) = 2^n*(2^k - 1)*(2^(n-k) - 1) + 1.
T(2*n, n) = 1 + 4^n - 2*8^n + 16^n = 1 + 4*A110206(n).
Sum_{k=0..n} T(n, k) = 4^n*(n-3) + 2^n*(n+3) + (n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*(1+(-1)^n)*(1 - (2/3)*binomial(2^n, 2)). (End)
Extensions
Edited by G. C. Greubel, Oct 02 2024