cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176793 A symmetrical triangle read by rows: T(n, k) = 2^n*(q^k - 1)*(q^(n - k) - 1) + 1, where q = 2.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 113, 145, 113, 1, 1, 481, 673, 673, 481, 1, 1, 1985, 2881, 3137, 2881, 1985, 1, 1, 8065, 11905, 13441, 13441, 11905, 8065, 1, 1, 32513, 48385, 55553, 57601, 55553, 48385, 32513, 1, 1, 130561, 195073, 225793, 238081, 238081, 225793, 195073, 130561, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 26 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,      5,      1;
  1,     25,     25,      1;
  1,    113,    145,    113,      1;
  1,    481,    673,    673,    481,      1;
  1,   1985,   2881,   3137,   2881,   1985,      1;
  1,   8065,  11905,  13441,  13441,  11905,   8065,      1;
  1,  32513,  48385,  55553,  57601,  55553,  48385,  32513,      1;
  1, 130561, 195073, 225793, 238081, 238081, 225793, 195073, 130561,    1;
		

Crossrefs

Cf. A000012 (q=1), this sequence (q=2), A176794 (q=3), A176795 (q=4).
Cf. A110206.

Programs

  • Magma
    f:= func< n,k,q | 1 + (q^k-1)*(q^(n-k)-1)*2^n >;
    A176793:= func< n,k | f(n,k,2) >;
    [A176793(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 02 2024
    
  • Mathematica
    T[n_, k_, q_] := 2^n*(q^k - 1)*(q^(n - k) - 1) + 1;
    Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def f(n, k, q): return 1 + (q^k -1)*(q^(n-k) -1)*2^n
    def A176793(n,k): return f(n,k,2)
    flatten([[A176793(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Oct 02 2024

Formula

T(n, k) = 1 - (f(n+1, 2*k+1, q) - f(n+1, 1, q)) - (f(n+1, 2*n-2*k+1, q) - f(n+1, 2*n+1, q)), where f(n, k, q) = 2^(n-1) * q^((k-1)/2), and q = 2.
From G. C. Greubel, Oct 02 2024: (Start)
T(n, k) = 2^n*(2^k - 1)*(2^(n-k) - 1) + 1.
T(2*n, n) = 1 + 4^n - 2*8^n + 16^n = 1 + 4*A110206(n).
Sum_{k=0..n} T(n, k) = 4^n*(n-3) + 2^n*(n+3) + (n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*(1+(-1)^n)*(1 - (2/3)*binomial(2^n, 2)). (End)

Extensions

Edited by G. C. Greubel, Oct 02 2024