A176860 Triangle, read by rows, T(n, k) = (-1)^k * (n-k+1)^(n+2) * binomial(n+1, k).
1, 8, -2, 81, -48, 3, 1024, -972, 192, -4, 15625, -20480, 7290, -640, 5, 279936, -468750, 245760, -43740, 1920, -6, 5764801, -11757312, 8203125, -2293760, 229635, -5376, 7, 134217728, -322828856, 282175488, -109375000, 18350080, -1102248, 14336, -8
Offset: 0
Examples
Triangle begins as: 1; 8, -2; 81, -48, 3; 1024, -972, 192, -4; 15625, -20480, 7290, -640, 5; 279936, -468750, 245760, -43740, 1920, -6; 5764801, -11757312, 8203125, -2293760, 229635, -5376, 7; 134217728, -322828856, 282175488, -109375000, 18350080, -1102248, 14336, -8;
References
- F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 576 and 267.
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Cf. A001286.
Programs
-
Magma
[(-1)^k*(n-k+1)^(n+2)*Binomial(n+1,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2021
-
Mathematica
T[n_, k_]:= (-1)^k*(n-k+1)^(n+2)*Binomial[n+1, k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
Sage
flatten([[ (-1)^k*(n-k+1)^(n+2)*binomial(n+1,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 07 2021
Formula
T(n, k) = (-1)^k * (n-k+1)^(n+2) * binomial(n+1, k).
Sum_{k=0..n} T(n, k) = (n + 1)*(n + 2)!/2 = A001286(n+2). - G. C. Greubel, Feb 07 2021
Extensions
Edited by G. C. Greubel, Feb 07 2021