cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176992 Triangle T(n,m) = binomial(2n-k+1, n+1) read by rows, 0 <= k <= n.

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 35, 15, 5, 1, 126, 56, 21, 6, 1, 462, 210, 84, 28, 7, 1, 1716, 792, 330, 120, 36, 8, 1, 6435, 3003, 1287, 495, 165, 45, 9, 1, 24310, 11440, 5005, 2002, 715, 220, 55, 10, 1, 92378, 43758, 19448, 8008, 3003, 1001, 286, 66, 11, 1, 352716, 167960, 75582, 31824, 12376, 4368, 1365, 364, 78, 12, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 08 2010

Keywords

Comments

Row sums are A001791.
Obtained from A059481 by removal of the last two terms in each row, followed by row reversal.
Riordan array (c(x)/sqrt(1 - 4*x), x*c(x)) where c(x) is the g.f. of A000108. - Philippe Deléham, Jul 12 2015

Examples

			Triangle begins:
       1;
       3,      1;
      10,      4,     1;
      35,     15,     5,     1;
     126,     56,    21,     6,    1;
     462,    210,    84,    28,    7,     1;
    1716,    792,   330,   120,   36,     8,    1;
    6435,   3003,  1287,   495,   165,   45,    9,   1;
   24310,  11440,  5005,  2002,   715,  220,   55,  10,  1;
   92378,  43758, 19448,  8008,  3003, 1001,  286,  66, 11,  1;
  352716, 167960, 75582, 31824, 12376, 4368, 1365, 364, 78, 12, 1;
		

Crossrefs

Cf. Similar triangle: A033184, A054445.
Cf. A178300 (reversal).

Programs

  • Magma
    /* As triangle */ [[Binomial(2*n-k+1,n+1): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jul 12 2015
  • Maple
    A176992 := proc(n,k) binomial(1+2*n-k,n+1) ; end proc: # R. J. Mathar, Dec 09 2010
  • Mathematica
    p[t_, j_] = ((-1)^(j + 1)/2)*Sum[Binomial[k - j - 1, j + 1]*t^k, {k, 0, Infinity}];
    Flatten[Table[CoefficientList[ExpandAll[p[t, j]], t], {j, 0, 10}]]

Formula

n-th row of the triangle = top row of M^n, where M is the following infinite square production matrix:
3, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... - Philippe Deléham, Jul 12 2015