A177028 Irregular table: row n contains values k (in descending order) for which n is a k-gonal number.
3, 4, 5, 6, 3, 7, 8, 9, 4, 10, 3, 11, 12, 5, 13, 14, 15, 6, 3, 16, 4, 17, 18, 7, 19, 20, 21, 8, 3, 22, 5, 23, 24, 9, 25, 4, 26, 27, 10, 28, 6, 3, 29, 30, 11, 31, 32, 33, 12, 34, 7, 35, 5, 36, 13, 4, 3, 37, 38, 39, 14, 40, 8, 41, 42, 15
Offset: 3
Examples
The table starts with row n=3 as: 3; 4; 5; 6, 3; 7; 8; 9, 4; 10, 3; 11; 12, 5; 13; 14; 15, 6, 3; 16, 4; 17; 18, 7; 19; 20; Before n=37, we have row n=36: {36, 13, 4, 3}. Thus 36 is k-gonal for k=3, 4, 13 and 36.
Links
- T. D. Noe, Rows n = 3..1000, flattened
Programs
-
Maple
P := proc(n,k) n/2*((k-2)*n-k+4) ;end proc: A177028 := proc(n) local k ,j,r,kg ; r := {} ; for k from n to 3 by -1 do for j from 1 do kg := P(j,k) ; if kg = n then r := r union {k} ;elif kg > n then break ; end if; end do; end do: sort(convert(r,list),`>`) ; end proc: for n from 3 to 20 do print(A177028(n)) ; end do: # R. J. Mathar, Apr 17 2011
-
Mathematica
nn = 100; t = Table[{}, {nn}]; Do[n = 2; While[p = n*(4 - 2*n - r + n*r)/2; p <= nn, AppendTo[t[[p]], r]; n++], {r, 3, nn}]; Flatten[Reverse /@ t] (* T. D. Noe, Apr 18 2011 *)
-
PARI
row(n) = my(list = List()); for (k=3, n, if (ispolygonal(n, k), listput(list, k))); Vecrev(list); \\ Michel Marcus, Mar 19 2021
-
PARI
row(n)=my(v=List());fordiv(2*n,k, if(k<2,next); if(k==n, break); my(s=(2*n/k-4+2*k)/(k-1)); if(denominator(s)==1, listput(v,s))); Vec(v) \\ Charles R Greathouse IV, Mar 19 2021
Comments