cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177050 Ceiling(n/2)-perfect numbers.

Original entry on oeis.org

2, 4, 8, 10, 16, 32, 64, 110, 128, 136, 256, 512, 884, 1024, 2048, 4096, 8192, 16384, 18632, 32768, 32896, 65536, 70564, 100804, 116624, 131072, 262144, 391612, 449295, 524288, 1048576, 2097152, 4194304, 8388608, 15370304, 16777216, 33554432, 67108864, 73995392
Offset: 1

Views

Author

Vladimir Shevelev, Dec 09 2010

Keywords

Comments

All powers of 2 except for 1 are terms of the sequence. All numbers of the form 2^(2^k-1)*p, where p=2^(2^k)+1 is a Fermat prime (k >= 1) are in the sequence. Thus numbers 136, 32896, 2147516416 are in the sequence. It is interesting that in this construction Fermat primes play the same role that Mersenne primes in construction of usual even perfect numbers. Unfortunately, the conversion for even ceiling(n/2)-perfect numbers is false: the first counterexample, found by D. S. McNeil, is 110 = 2*5*11. Besides, the first odd term, found by D. S. McNeil, is 449295 = 3*5*7*11*389.

Crossrefs

Programs

  • PARI
    isok(n) = sumdiv(n, d, (dMichel Marcus, Feb 08 2016
  • Sage
    is_A177050 = lambda n: sum(ceil(d/2) for d in divisors(n)) == 2*ceil(n/2) # D. S. McNeil, Dec 10 2010
    

Extensions

a(31)-a(39) from Michel Marcus, Feb 08 2016