cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177059 a(n) = 25*n^2 + 25*n + 6.

Original entry on oeis.org

6, 56, 156, 306, 506, 756, 1056, 1406, 1806, 2256, 2756, 3306, 3906, 4556, 5256, 6006, 6806, 7656, 8556, 9506, 10506, 11556, 12656, 13806, 15006, 16256, 17556, 18906, 20306, 21756, 23256, 24806, 26406, 28056, 29756, 31506, 33306, 35156, 37056, 39006, 41006, 43056
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Crossrefs

Programs

  • Magma
    I:=[6, 56, 156]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 03 2012
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {6, 56, 156}, 50] (* Vincenzo Librandi, Feb 03 2012 *)
    Table[25n^2+25n+6,{n,0,40}] (* Harvey P. Dale, Mar 30 2019 *)
  • PARI
    a(n)=25*n^2+25*n+6 \\ Charles R Greathouse IV, Dec 28 2011
    

Formula

a(n) = (5*n + 2)*(5*n + 3).
a(n) = 50*n + a(n-1) with a(0)=6.
a(n) = 25*A002061(n+1) - 19. - Reinhard Zumkeller, Jun 16 2010
G.f.: (6 + 38*x + 6*x^2)/(1-x)^3. - Vincenzo Librandi, Feb 03 2012
From Amiram Eldar, Jan 23 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(1 - 2/sqrt(5))*Pi/5.
Sum_{n>=0} (-1)^n/a(n) = 2*log(phi)/sqrt(5) - 2*log(2)/5, where phi is the golden ratio (A001622).
Product_{n>=0} (1 - 1/a(n)) = 2*sqrt(2/(5+sqrt(5))) * cos(Pi/(2*sqrt(5))).
Product_{n>=0} (1 + 1/a(n)) = sqrt(2 - 2/sqrt(5)) * cosh(sqrt(3)*Pi/10).
Product_{n>=0} (1 - 2/a(n)) = 1/phi. (End)
From Elmo R. Oliveira, Oct 24 2024: (Start)
E.g.f.: exp(x)*(6 + 25*x*(2 + x)).
a(n) = A016873(n)*A016885(n) = 2*A061793(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A061792 a(n) = 49*(n*(n+1)/2) + 6.

Original entry on oeis.org

6, 55, 153, 300, 496, 741, 1035, 1378, 1770, 2211, 2701, 3240, 3828, 4465, 5151, 5886, 6670, 7503, 8385, 9316, 10296, 11325, 12403, 13530, 14706, 15931, 17205, 18528, 19900, 21321, 22791, 24310, 25878, 27495, 29161, 30876, 32640, 34453, 36315, 38226, 40186, 42195
Offset: 0

Views

Author

Jason Earls, Jun 22 2001

Keywords

Comments

"If n is a triangular number, then so are 9*n+1, 25*n+3 and 49*n+6. (Euler, 1775)." Burton, p. 17.

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 17.

Crossrefs

Programs

  • Mathematica
    49*Accumulate[Range[0,40]]+6 (* or *) LinearRecurrence[{3,-3,1},{6,55,153},40] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n) = 49*(n*(n + 1)/2) + 6

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=6, a(1)=55, a(2)=153. - Harvey P. Dale, Apr 11 2012
From Elmo R. Oliveira, Oct 23 2024: (Start)
G.f.: (6 + 37*x + 6*x^2)/(1 - x)^3.
E.g.f.: (6 + 49*x + 49*x^2/2)*exp(x).
a(n) = 6 + 49*A000217(n) = A177071(n)/2. (End)
Showing 1-2 of 2 results.