cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A177222 Numbers k that are the products of two distinct primes, such that 2*k + 1 and 4*k + 3 are also products of two distinct primes.

Original entry on oeis.org

38, 46, 106, 129, 133, 145, 201, 203, 235, 291, 298, 334, 335, 381, 407, 417, 458, 489, 497, 538, 579, 583, 597, 623, 626, 649, 685, 689, 694, 707, 758, 767, 781, 815, 898, 899, 921, 926, 959, 995, 1073, 1079, 1082, 1094, 1099, 1139, 1142, 1157, 1214, 1226
Offset: 1

Views

Author

Keywords

Examples

			38 is a term because 38 = 2*19, 2*38 + 1 = 77 = 7*11, and 4*38 + 1 = 155 = 5*31.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Last/@FactorInteger[n] == {1,1};  lst = {}; Do[If[f[n] && f[2*n+1] && f[4*n+3], AppendTo[lst, n]], {n, 1000}]; lst

A177223 Numbers k that are the products of two distinct primes such that 2*k+1, 4*k+3 and 8*k+7 are also products of two distinct primes.

Original entry on oeis.org

145, 203, 291, 298, 407, 497, 649, 707, 758, 815, 899, 926, 959, 995, 1079, 1094, 1139, 1142, 1157, 1313, 1403, 1415, 1461, 1497, 1538, 1639, 1658, 1691, 1857, 1934, 1945, 1991, 2123, 2159, 2217, 2234, 2315, 2603, 2629, 2807, 2991, 3215, 3254, 3279, 3305
Offset: 1

Views

Author

Keywords

Comments

A number k is the product of two distinct primes iff k = p*q where p and q are distinct primes. - N. J. A. Sloane, Jan 11 2025

Examples

			145 is a term because 145 = 5*29, 2*145 + 1 = 291 = 3*97, 4*145 + 1 = 583 = 11*53, and 8*145 + 1 = 1167 = 3*389.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n+1]&&f[4*n+3]&&f[8*n+7],AppendTo[lst,n]],{n,0,2*7!}];lst
    tdpQ[n_]:=With[{c={n, 2n+1, 4n+3,8n+7}},PrimeNu[c]==PrimeOmega[c]=={2,2,2,2}]; Select[Range[3500],tdpQ] (* Harvey P. Dale, Jan 11 2025 *)

A378297 Squarefree semiprimes k that remain squarefree semiprimes for exactly two iterations of the map k -> 2*k+1.

Original entry on oeis.org

38, 46, 106, 129, 133, 201, 235, 334, 335, 381, 417, 458, 489, 538, 579, 583, 597, 623, 626, 685, 689, 694, 767, 781, 898, 921, 1073, 1082, 1099, 1214, 1226, 1227, 1234, 1285, 1299, 1315, 1385, 1486, 1514, 1517, 1546, 1603, 1631, 1646, 1799, 1817, 1819, 1841
Offset: 1

Views

Author

Paul Duckett, Nov 22 2024

Keywords

Examples

			38 is a term because 38 (semiprime) gives 2*38+1 (77, semiprime) gives 2*77+1 (155, semiprime).  But 155 gives 2*155+1 (311, not semiprime), so the chain has length three (38, 77, 155).
921 is a term because 921 (semiprime) gives 2*921+1 (1843, semiprime) gives 2*1843+1 (3687, semiprime). But 3687 gives 2*3687+1 (7375, not semiprime), so the chain has length three (921, 1843, 3687).
		

Crossrefs

Programs

  • Mathematica
    s[n_] := -1 + Length@ NestWhileList[2*# + 1 &, n, FactorInteger[#][[;; , 2]] == {1, 1} &]; Select[Range[2000], s[#] == 3 &] (* Amiram Eldar, Dec 17 2024 *)

A379372 Sphenic numbers k such that 2*k+1 is also a sphenic number.

Original entry on oeis.org

322, 357, 370, 402, 430, 442, 610, 654, 790, 822, 826, 874, 885, 942, 1045, 1054, 1105, 1130, 1182, 1222, 1342, 1358, 1414, 1510, 1578, 1582, 1677, 1702, 1738, 1742, 1767, 1798, 1802, 1810, 1842, 1947, 2014, 2035, 2086, 2185, 2222, 2247, 2282, 2334, 2365, 2397
Offset: 1

Views

Author

Paul Duckett, Dec 21 2024

Keywords

Examples

			322 is a term because 322 = 2*7*23 (sphenic) and 2*322+1 = 645 = 3*5*43 (sphenic).
		

Crossrefs

Programs

  • Mathematica
    sphenicQ[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1}; Select[Range[3000], And @@ sphenicQ /@ {#, 2*# + 1} &] (* Amiram Eldar, Dec 21 2024 *)
Showing 1-4 of 4 results.