A177228 Triangle read by rows: T(n, k) = -binomial(n,k) for 1 <= k <= n-1, otherwise T(n, k) = 3.
3, 3, 3, 3, -2, 3, 3, -3, -3, 3, 3, -4, -6, -4, 3, 3, -5, -10, -10, -5, 3, 3, -6, -15, -20, -15, -6, 3, 3, -7, -21, -35, -35, -21, -7, 3, 3, -8, -28, -56, -70, -56, -28, -8, 3, 3, -9, -36, -84, -126, -126, -84, -36, -9, 3, 3, -10, -45, -120, -210, -252, -210, -120, -45, -10
Offset: 0
Examples
Triangle begins: 3; 3, 3; 3, -2, 3; 3, -3, -3, 3; 3, -4, -6, -4, 3; 3, -5, -10, -10, -5, 3; 3, -6, -15, -20, -15, -6, 3; 3, -7, -21, -35, -35, -21, -7, 3; 3, -8, -28, -56, -70, -56, -28, -8, 3; 3, -9, -36, -84, -126, -126, -84, -36, -9, 3; 3, -10, -45, -120, -210, -252, -210, -120, -45, -10, 3;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A177228:= func< n,k | k eq 0 or k eq n select 3 else -Binomial(n,k) >; [A177228(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 09 2024
-
Maple
f := proc(n,t) if n = 0 then t/(1+t) ; else diff( t/(1+t),t$n) ; factor(%) ; end if; end proc: A177228 := proc(n,m) f(n,t)/f(m,t)/f(n-m,t) ; %/(1+t) ; subs(t=1/3,%) ; end proc: seq(seq( A177228(n,m),m=0..n),n=0..12) ; # R. J. Mathar, Mar 27 2024
-
Mathematica
T[n_, k_]:= If[k==0 || k==n, 3, -Binomial[n,k]]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A177228(n,k): return 3 if (k==0 or k==n) else -binomial(n,k) flatten([[A177228(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 09 2024
Formula
T(n, k) = -binomial(n,k) for 1 <= k <= n-1, otherwise T(n, k) = 3.
Sum_{k=0..n} T(n, k) = 8 - 2^n, for n >= 1.
From G. C. Greubel, Apr 09 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = 4*(1 + (-1)^n) - 5*[n=0].
Sum_{k=0..floor(n/2)} T(n-k,k) = 2*(3+(-1)^n-2*[n=0])-Fibonacci(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k,k) = 4*(1 + cos(n*Pi/2) - [n=0]) - (2/sqrt(3))*cos((2*n-1)*Pi/6). (End)
Extensions
Edited by G. C. Greubel, Apr 09 2024
Comments