A177227 Triangle, read by rows, T(n, k) = -binomial(n,k) for 0 < k < n, otherwise T(n, k) = 2.
2, 2, 2, 2, -2, 2, 2, -3, -3, 2, 2, -4, -6, -4, 2, 2, -5, -10, -10, -5, 2, 2, -6, -15, -20, -15, -6, 2, 2, -7, -21, -35, -35, -21, -7, 2, 2, -8, -28, -56, -70, -56, -28, -8, 2, 2, -9, -36, -84, -126, -126, -84, -36, -9, 2, 2, -10, -45, -120, -210, -252, -210, -120, -45, -10, 2
Offset: 0
Examples
Triangle begins as: 2; 2, 2; 2, -2, 2; 2, -3, -3, 2; 2, -4, -6, -4, 2; 2, -5, -10, -10, -5, 2; 2, -6, -15, -20, -15, -6, 2; 2, -7, -21, -35, -35, -21, -7, 2; 2, -8, -28, -56, -70, -56, -28, -8, 2; 2, -9, -36, -84, -126, -126, -84, -36, -9, 2; 2, -10, -45, -120, -210, -252, -210, -120, -45, -10, 2;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A177227:= func< n,k | k eq 0 or k eq n select 2 else -Binomial(n,k) >; [A177227(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 09 2024
-
Mathematica
T[n_, k_]:= If[k==0 || k==n, 2, -Binomial[n,k]]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A177227(n,k): return 2 if (k==0 or k==n) else -binomial(n,k) flatten([[A177227(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 09 2024
Formula
T(n, 0) = T(n, n) = 2, otherwise T(n, k) = -binomial(n,k).
Sum_{k=0..n} T(n, k) = -A131130(n-2) - 3*[n=0], n >= 1 (row sums).
From G. C. Greubel, Apr 09 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = 3*(1 + (-1)^n) - 4*[n=0].
Sum_{k=0..floor(n/2)} T(n-k,k) = (3/2)*(3 + (-1)^n - 2*[n=0])-Fibonacci(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k,k) = 3*(1 + cos(n*Pi/2) - [n=0]) - (2/sqrt(3))*cos((2*n-1)*Pi/6). (End)
Extensions
Edited by G. C. Greubel, Apr 09 2024
Comments