A177229 Triangle, read by rows, T(n, k) = -binomial(n,k) for 1 <= k <= n-1, otherwise T(n, k) = 4.
4, 4, 4, 4, -2, 4, 4, -3, -3, 4, 4, -4, -6, -4, 4, 4, -5, -10, -10, -5, 4, 4, -6, -15, -20, -15, -6, 4, 4, -7, -21, -35, -35, -21, -7, 4, 4, -8, -28, -56, -70, -56, -28, -8, 4, 4, -9, -36, -84, -126, -126, -84, -36, -9, 4, 4, -10, -45, -120, -210, -252, -210, -120, -45, -10, 4
Offset: 0
Examples
Triangle begins: 4; 4, 4; 4, -2, 4; 4, -3, -3, 4; 4, -4, -6, -4, 4; 4, -5, -10, -10, -5, 4; 4, -6, -15, -20, -15, -6, 4; 4, -7, -21, -35, -35, -21, -7, 4; 4, -8, -28, -56, -70, -56, -28, -8, 4; 4, -9, -36, -84, -126, -126, -84, -36, -9, 4; 4, -10, -45, -120, -210, -252, -210, -120, -45, -10, 4;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A177229:= func< n,k | k eq 0 or k eq n select 4 else -Binomial(n,k) >; [A177229(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 09 2024
-
Mathematica
T[n_, k_]:= If[k==0 || k==n, 4, -Binomial[n,k]]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A177229(n,k): return 4 if (k==0 or k==n) else -binomial(n,k) flatten([[A177229(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 09 2024
Formula
T(n, k) = -binomial(n,k) for 1 <= k <= n-1, otherwise T(n, k) = 4.
From G. C. Greubel, Apr 09 2024: (Start)
Sum_{k=0..n} T(n, k) = 10 - 2^n - 5*[n=0] (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = 5*(1 + (-1)^n) - 6*[n=0].
Sum_{k=0..floor(n/2)} T(n-k,k) = (5/2)*(3+(-1)^n-2*[n=0])-Fibonacci(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k,k) = 5*(1 + cos(n*Pi/2) - [n=0]) - (2/sqrt(3))*cos((2*n-1)*Pi/6). (End)
Extensions
Edited by G. C. Greubel, Apr 09 2024
Comments